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a b s t r a c t

Objective: The objective of the presented paper is establishing the multi-relaxation-time lattice Boltz-
mann method (MRT-LBM) for solving 2D flow equations transformed in a curvilinear coordinate system.

Method: Using the complete transformation approach – which includes transformation of both depen-
dent and independent variables between the physical and computational domain – corresponding forms
of the equilibrium function and of the force term for the 2D Navier–Stokes equations and the shallow
water equations have been derived. The physical flow domain of arbitrary geometry in the horizontal
plane, is covered with adequate curvilinear mesh, while the calculation procedure is carried out in the
D2Q9 square lattice, applying the basic form of the boundary condition method on water-solid and open
boundaries as well.

Test cases: The method is tested using four different examples: Couette flow in a straight inclined
channel, Taylor–Couette flow between two cylinders, a non-prismatic channel in a 180� bend, and a seg-
ment of irrigation channel with a parabolic cross section in a 90� bend. In the cases of the bent channels,
previously available velocity measurements have been used for validation of the model. In addition, the
procedure employs a mathematical model based on traditional CFD procedures.

Results: The remarkable agreement between the results obtained by the proposed model and the
corresponding analytical values and measurements shows that the presented curvilinear form of the
LBM is capable of solving very complex environmental problems, maintaining the order of accuracy,
simplicity and efficiency of the basic LBM.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Based on the kinetic structure Lattice Gas Automata (LGA) [1,2],
the lattice Boltzmann method (LBM) represents a new approach for
modeling governing equations of Computational Fluid Dynamics
(CFD). Solving particular forms of fluid motion equations indirectly
(Navier–Stokes equations, Reynolds equations) – wherein, based
on principles of statistical physics [3] and the kinetic theory of
matter – the motion of particles is modeled on a mesoscopic level,
resulting in a very powerful numerical procedure for solving com-
plex physical processes related to fluid motion (multiphase flow,
flow in porous media). Therefore, the area of application of the
LBM increases (river hydraulics, chemical industry), together with
further improvements in the actual basic structure of the LBM.
These improvements enable the LBM to solve a wide range of a
complex flows, characterized by a variety of boundary conditions.
Accordingly, a crucial element of modeling these kinds of flows,
challenging the essential numerical characteristics of the LBM, is

the correct and adequate definition of boundary conditions charac-
teristic of domains of arbitrary shape.

CFD, recognized as a scientific discipline aimed at defining and
studying relevant physical processes related to ‘‘real physical
states and conditions’’ of fluid motion, first of all, requires an ade-
quate and accurate description of complex hydraulic conditions.
Since the main cause of hydraulic complexity lies primarily in
the geometrical structure of the referred water body, a huge por-
tion of research in the area of CFD is aimed at producing and
improving existing numerical procedures capable of coping with
problems imposed by geometrically complex domains. Compared
to the classic Computational Fluid Dynamics (finite difference,
finite element method) the LBM represents a relatively recent
approach in the field of CFD. To start with, an appropriate method
for solving fluid flows in domains of arbitrary geometry had to be
adopted. Several different approaches have been developed for this
purpose in the past two decades. To overcome difficulties in apply-
ing boundary conditions along boundaries not coinciding with the
direction of the main axes, Filippova and Hänel [4] proposed a pro-
cedure of local hierarchical grid refinement on the classic uniform
calculation grid. This approach has been widely used and further
improved by many researches [5–9]. In an attempt to increase
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capability of the LBM in solving flows in domains of arbitrary
geometry, authors He et al. [10] first applied the interpolation-sup-
plemented scheme (ISLBE). Using non-uniform computational
grids and the Lagrangian nature of the LBM, the computational
domain is covered with a body-fitted rectangular grid, while the
unknown distribution functions are calculated using interpolation
techniques [11–13]. Furthermore, to improve efficiency of the pro-
posed method, Shu et al. [14] recently introduced the Taylor series
expansion and optimization by the least squares method for deter-
mining the distribution functions. The application of this method,
which can be seen as an extended and enhanced form of the inter-
polation-supplemented LBM, can be found in [15–17]. Since all
proposed configurations of the LBM for non-uniform grids intro-
duce additional steps in the calculation process – which in a cer-
tain sense affects the basic nature of the method – another
approach has been developed in the domain of rectangular grids.
In order to preserve computational efficiency of the basic form of
the LBM in cases of non-uniform grids, Zhou [19] has introduced
a new form of local equilibrium distribution functions; while Bouz-
idi et al. [18] have proposed a unique form of the transformation
matrix for the multiple relaxation time model (MRT). Besides the
above-mentioned procedures, models based on discretization of
the partial differential Boltzmann equation transformed in curvi-
linear coordinate system utilizing classic CFD techniques, are also
available [20–23].

Application of the proposed variety of LBMs on non-uniform
rectangular grids refers to the domain within the boundaries. How-
ever, additional techniques are required in the neighborhood of the
solid–water boundary. In case of arbitrary geometry, when the
boundary line intersects with the calculation grid, the existing
boundary condition methods (bounce-back, elastic-collision
scheme) need to be modified. The first attempt to solve the
unknown distribution function ‘‘coming’’ from a ‘‘rigid’’ node to
the ‘‘fluid’’ node using a prescribed formulation and interpolation
technique was made by Ginzburg and Adler [48]. Filippova and
Hänel [4] proposed a procedure for application on optionally bent
boundaries stretching between the nodes of the lattice. Improve-
ment of the proposed method in terms of stability and efficiency
is outlined in [24–28]. Another approach implying reconstruction
of the hydrodynamic variables using density, velocity and rate of
strain, instead of the distribution function, originates from Lätt
et al. [29]. It was subsequently improved by Verschaeve and Müller
[30]. However, additional interpolation/extrapolation operations
have adverse effects on the proposed methods compared to the
basic form of the LBM in terms of efficiency, simplicity and accu-
racy. In addition to the methods outlined above, certain authors
overbridge the problem of boundary conditions imposed by com-
plex geometry using discretization (finite difference, finite volume
method) of the partial differential Boltzmann equation [22].

Generally, in dealing with domains of arbitrary geometry, CFD
requires supplementary steps, regardless of whether the classical
method of discretization of the flow equations or the LBM
approach is used. In case of traditional CFD methods, writing flow
equations in curvilinear coordinates results in bulky expressions.
For this, the efficiency and accuracy of the methods available for
the discretization and solving of the obtained algebraic equations
become significantly deteriorated. On the other hand, as previously
mentioned, introducing additional steps in the LBM is the main
disadvantage of the proposed techniques, since they cause a loss
of the original advantageous nature of the LBM. In order to main-
tain the simplicity and efficiency of the LBM in cases of domains
with complex geometry, the option of avoiding additional terms
together with forcing the basic, straightforward forms of boundary
conditions is explored by bringing together the LBM with methods
established in the classic CFD (finite difference) [31]. Using a
complete transformation of the 2D flow equations in curvilinear

coordinates and covering the area of interest with a body-fitted
mesh provide appropriate equilibrium distribution functions and
force terms. Then, analogous to the finite-difference methods
(FDM), a square lattice is used for the computational grid. Since
the transformed flow equations now have contravariants as depen-
dent variables, as opposed to velocity components in the Cartesian
coordinate system, application of the boundary conditions is
restored to its basic form, while the simplicity of the method as
well as its suitability for parallelization is maintained. By this
approach, demand for mapping the locations and defining the
‘‘nature’’ of the boundary intersections is eliminated, which in turn
generalizes the process of flow modeling in domains of complex
geometry.

To enhance the stability of the proposed curvilinear form of the
LBGK (lattice Boltzmann Bhatnagar-Gross-Krook), which is the
main weakness of the LBM in cases of high Reynolds numbers
characteristic to natural and artificial watercourses, the multi
relaxation time method (MRT) for the curvilinear LBM is intro-
duced in this paper. Using a technique whereby the relaxation of
the non-conserved moments towards the equilibrium in the
moment space is performed with different relaxation times, the
stability of the method in the domain of high Reynolds numbers
is significantly increased. The basic theory and the corresponding
applications of the MRT method are available in [32–37]. Since
modeling most of the flows of interest exceeds the capability of
the single relaxation time LBGK method [38], the MRT method
enhanced in sense of simulation flows of high Reynolds numbers
in domains of complex geometry, now yields the opportunity of
modeling flows in natural water bodies. This has been tested by
four examples in this paper. The first test is carried out on a
straight channel set inclined to the main axis in baseplot. The sec-
ond example is a circular Couette flow between two coaxial cylin-
ders. The third and fourth examples analyze a prismatic flume in a
90� and 180� bend, respectively. The numerical results of the
straight channel are compared to the corresponding analytic solu-
tion, whereas velocity and depth measurements are used for the
validation of the proposed method in the cases of the 90� and
180� bends. Applying standard error evaluation techniques, the
accuracy of the proposed method in modeling complex flows in
curvilinear coordinate systems is confirmed, while the efficiency
and simplicity of the method is maintained in the framework of
the original Cartesian LBM-MRT.

2. The mathematical model

2.1. 2D Navier–Stokes equations transformed in a curvilinear
coordinate system using complete transformation

The Navier–Stokes equations for 2D flow as defined in the
Cartesian coordinate system (in horizontal x, y plane) are given
by the continuity equation and the momentum equations in x
and y directions:
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where t is time, x, y are the Cartesian coordinates, u, v are the Carte-
sian components of flow velocity, q is the density of the fluid, p is
pressure, Sx and Sy are terms involving all additional influences
(gravitation), while m is the coefficient of kinematic viscosity.

Since domains of complex geometry are characterized mainly
by arbitrary boundaries which do not coincide with the directions
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