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a b s t r a c t

We have developed a volume of fluid (VoF)/projection method for simulating droplet-laden incompress-
ible turbulent flows with uniform density and viscosity. The method is mass-conserving, wisp-free, and
consistent (i.e., the VoF function, C, satisfies the condition 0 6 C 6 1).

First, we present the results of the VoF method for tracking volumes of initially spherical shape and
with zero surface tension in analytical velocity fields (linear translation, solid-body rotation, single-vor-
tex flow, and Taylor–Green vortex) and in incompressible isotropic turbulence at Rek0 = 75 and 190. These
numerical tests show that (i) our VoF method is mass-conserving, consistent, and wisp-free; (ii) for a CFL
number of 0.1, the VoF geometrical error has almost a second-order convergence rate for a mesh
resolution with more than 10 grid points per diameter; (iii) in the isotropic turbulence case, a resolution
of about 32 grid points per diameter of the sphere is required in order to limit the VoF geometrical error
below 1%. Then, in order to simulate droplet-laden flows, we have adopted the continuum surface force
(CSF) model to compute the surface tension force. We have modified the sequence of the VoF advection
sweeps, and show that, in the case of droplet in a translating reference frame, the r.m.s. of the spurious
currents is about 1% of the translating velocity. Finally, we present DNS results of fully-resolved droplet-
laden incompressible isotropic turbulence at Rek0 ¼ 75 using a computational mesh of 10243 grid points
and 7000 droplets of Weber number Werms ¼ 0:5, and initial droplet diameter equal to the Taylor length-
scale of turbulence.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The computational methods to perform fully-resolved simula-
tions of multiphase flows fall into two main categories: 1. interface
capturing methods (ICM), such as the volume of fluid (VoF) [1] and
the level-set [2] methods; 2. interface tracking methods (ITM),
such as the front tracking [3] and the immersed boundary [4]
methods. Both ICM and ITM are designed to compute (capture or
track) sharp interfaces, and can be used on a fixed Cartesian mesh.
Mass conservation, the ability to compute strong deformations of
the interface, and interface topology changes due to break-up
and coalescence are highly desirable features in the simulations
of multiphase flows, e.g. gas–liquid and liquid–liquid. Interface
topology changes need ad hoc modeling in ITM [3], whereas they
are directly captured by the ICM [5].

Among the ICM, the level-set is a widely used method where a
distance function to the interface is advected with the flow
throughout the computational domain in place of the interface
itself, thus avoiding the need to advect a discontinuous function.
The drawback of the level-set method is that it does not conserve
mass even when coupled with a particle tracking method [6]. In
the VoF method, instead, the advection equation of the volume
fraction is directly solved for, thus, the VoF method could poten-
tially conserve mass exactly. Limits to this potential may only
come from the numerics adopted. A color function representing
the volume fraction of the reference phase is advected geometri-
cally and the interface is reconstructed from this function typically
with a piecewise linear representation.

VoF advection schemes can be broadly classified as either direc-
tion split or unsplit schemes. Split advection schemes consist of a
sequence of one-dimensional advection and reconstruction steps
in each coordinate direction, thus they are algorithmically straight-
forward to implement compared to multidimensional (unsplit)
schemes. On the other hand, unsplit methods have the advantage
of only requiring one advection and reconstruction step per time
step, however the advection step is often algorithmically complex.
This is because unsplit methods require either the computation of
a flux polyhedron for each cell face [7] or calculation of polyhedra
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volumes with non-planar surfaces requiring triangulation [8]. In
our experience, these geometric calculations are the computational
bottleneck of the VoF advection scheme. Thus, the computational
savings of the unsplit versus the split method (if any) are likely
to be small. Furthermore, unsplit methods do not necessarily con-
serve mass to zero machine precision [8]. For these reasons, we
chose to adopt a split mass-conserving VoF advection approach.

This paper presents a numerical methodology to perform DNS
of droplet-laden incompressible turbulent flows with uniform den-
sity and viscosity. This is a necessary step to verify that the numer-
ical method is accurately simulating the motion of finite-size
droplets, i.e., volume tracking and surface tension computations,
before we can develop a coupled flow solver where density and
viscosity variations occur between the droplet and the surrounding
fluid (such a flow solver has been developed in Ref. [9]). We
adopted the volume of fluid (VoF) method because of its potential
to conserve mass with zero-machine accuracy. The VoF advection
is performed through a spatially split approach, i.e., the Eulerian
implicit - Eulerian algebraic - Lagrangian explicit (EI-EA-LE) algo-
rithm which was originally proposed by Scardovelli et al. [10].
We chose EI-EA-LE over the EILE-3D algorithm [11] because EI-
EA-LE requires half the number of advection and reconstruction
steps and does not require the calculation of three two-dimen-
sional divergence-free velocity fields. Thus, EI-EA-LE is at least
two times computationally faster than EILE-3D. The original
EI-EA-LE algorithm [10] is globally mass-conserving but generates
wisps, and does not conserve the mass of the individual volumes
tracked in the flow. We have improved this method with the addi-
tion of a redistribution and a wisp suppression algorithm. Our
method is consistent (i.e., the volume of fluid function, C, satisfies
the condition 0 6 C 6 1) and wisps-free and, thus, conserves mass
both globally and locally within each volume tracked. We also
present and analyze the numerical treatment of the surface tension
force within a projection method combined with our VoF method.
The surface tension effects are treated with the continuum surface
force (CSF) approach proposed by Brackbill et al. [12] and adapted
to the VoF method by Francois et al. [13].

We present the governing equations for droplet-laden flows in
Section 2, the projection method in Section 3, the VoF interface
reconstruction and advection algorithms in Section 4, and the
method to compute the interface curvature in Section 5. In Sec-
tion 6, we present the numerical results for the volume-tracking
test-cases (zero surface tension), and for the coupled droplet-flow
cases (non-zero surface tension). In Section 7, we give the conclud-
ing remarks.

2. Governing equations

The non-dimensional governing equations for a droplet-laden
incompressible flow are the continuity and momentum
(Navier–Stokes) equations,

r � u ¼ 0; ð1Þ

@tuþr � ðuuÞ ¼ 1
q
�rpþ 1

Re
r � l ruþ ðruÞT

� �h i
þ 1

We
f r

� �
;

ð2Þ

where uðx; tÞ is the fluid velocity, pðx; tÞ is the pressure, qðx; tÞ is the
density, lðx; tÞ is the viscosity, and f rðx; tÞ is the force per unit
volume due to the surface tension,

f r ¼ rjndðx� xsÞ: ð3Þ

In Eq. (3), r is the surface tension coefficient, j is the curvature of
the interface between the two fluids (i.e., droplet and surrounding
fluid), n is the unit vector normal to the interface whose position

is xs, and d is the Dirac d-function that is needed such to impose
the force only at the interface between the two fluids. Note that
for droplet-laden flow with a uniform surface tension, the non-
dimensional r is equal to unity. f r is directed towards the fluid
respect to which the interface is concave. Fig. 1 shows the direction
of the interface normal n and the sign of the interface curvature j.
The interface normal is oriented such that it always points into fluid
2 and the curvature is positive (negative) if the interface is concave
(convex) with respect to fluid 2.

In Eq. (2), the Reynolds and Weber numbers are defined as

Re ¼
eUeL
~m
; ð4Þ

We ¼
~qeU2eL

~r
; ð5Þ

where eU ; eL; ~m; ~q and ~r denote respectively the reference dimen-
sional velocity, length, kinematic viscosity, density, and surface
tension coefficient used to normalize the Navier–Stokes equations,
(1) and (2). Throughout the paper all variables are dimensionless
unless they are written with �, as in (4) and (5).

In the present paper, uniform density and viscosity (q ¼ 1 and
l ¼ 1) are imposed such to focus the study on the accuracy of
the volume tracking and surface-tension force algorithms. Thus,
the Navier–Stokes equations, (1) and (2), we solve are written as

r � u ¼ 0; ð6Þ

@tuþr � ðuuÞ ¼ �rpþ 1
Re
r2uþ 1

We
f r: ð7Þ

3. Projection method

The Navier–Stokes equations, (6) and (7), are solved numeri-
cally using the projection method. Time integration of (7) from
time tn to tnþ1 ðtnþ1 ¼ tn þ DtÞ is performed using the second-order
Adams–Bashforth scheme,

u� � un

Dt
¼ 3

2
RUn � 1

2
RUn�1: ð8Þ

In Eq. 8, u� is a non-divergence-free fluid velocity approximating
unþ1, and

RUn ¼ �r � ðununÞ þ 1
Re
r2un þ 1

We
f nþ1
r : ð9Þ

The divergence-free condition on the updated fluid velocity is im-
posed by solving the Poisson equation for pressure,

r2pnþ1 ¼ 1
Dt
r � u�; ð10Þ

and by updating the fluid velocity as

unþ1 ¼ u� � Dtrpnþ1: ð11Þ

Eqs. (9)–(11) are discretized in space on a uniform staggered
mesh using second-order central difference schemes. The velocity
and surface tension force components (ui and fri) are staggered,
and all the other field variables are co-located. The Poisson Eq.
(10) in finite-difference form is solved using a combination of a
two-dimensional fast Fourier transform (FFT) in the x–y plane,
and Gauss elimination in the z direction [14]. Periodic boundary
conditions are imposed in the three spatial directions.

3.1. Surface tension force

In the continuous surface force (CSF) approach by Brackbill et al.
[12], the surface tension force, f r, is computed, after replacing
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