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a b s t r a c t

In this paper we present a pressure-based numerical scheme for the direct numerical simulation of com-
pressible two-phase flows using the stiffened gas equation of state. While for many technical applica-
tions, two-phase flows can be treated as incompressible, this assumption fails in cases with high
pressure and temperature as they can be found in rocket combustion chambers, for example. Our interest
is in the development of a pressure-based method that aims at the extension of an incompressible
two-phase code to the compressible regime. The development builds upon an asymptotic pressure
decomposition using multiple pressure variables and has originally been designed for single-phase flows.
Its adaptation to compressible two-phase flows is presented. This includes the possibility to resolve and
track the interface as well as the description of the two phases by different equations of state. It is shown
that the pressure-based scheme does not necessitate a cumbersome interface treatment in order to avoid
spurious oscillations in the vicinity of the material interface. We do not yet take into account phase
changes whose approximation requires a careful thermodynamic consistent procedure. Numerical exam-
ples are shown ranging from the one-dimensional transport of a multi-material contact discontinuity to
the three-dimensional simulation of shock-droplet interactions. The scheme proves to be able to accu-
rately simulate the propagation of pressure waves in gaseous and liquid phases.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The direct numerical simulation (DNS) of two-phase flows
including the resolution of the material interface is usually per-
formed on the basis of the incompressible Navier–Stokes equations.
Typical technical applications concern droplets in an air environ-
ment at ambient pressure. In such a configuration, the liquid itself
can be considered to be almost incompressible. Often, the droplets
are moving at low speed, such that the compressibility of the gas
can also be neglected. Under these circumstances, kinetic and inter-
nal energy are decoupled resulting in the separation of thermody-
namics and hydrodynamics. This separation comes along with
different roles of pressure for compressible and incompressible
flows. The incompressible pressure is decoupled from density and
internal energy, as an equation of state (EOS) is not present.
Therefore, pressure is of purely hydrodynamic nature and loses its
thermodynamic meaning. Due to the incompressibility assumption

thermodynamic effects are not directly coupled to the flow vari-
ables and phase changes are modeled as source terms [1]. However,
in the context of fuel injection processes, more extreme ambient
conditions have to be faced that are characterized by an augmented
pressure and temperature and such an incompressible modeling is
no longer admissible. Especially for large pressure and temperature
gradients in the flow field, the thermodynamic effects have to be
fully coupled to the fluid flow requiring the compressible flow
equations.

The simulation of multiphase flows is always characterized by
large jumps in the material properties across the interface separat-
ing two phases. An additional difficulty is the resolution and track-
ing of the interface itself. Both issues are of great importance for
incompressible and compressible flows. A lot of different interface
tracking methods have been developed and presented so far. Fol-
lowing [2] they can be grouped into two categories, the first group
consists of the so-called moving and adaptive grid methods and the
second group comprises the fixed grid methods. For a moving grid
method, the grid cell boundaries are always aligned to the
interface. Every grid cell only contains one fluid type allowing an
accurate separation of the fluids with respect to the solution of
the corresponding flow equations [2].
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Fixed grid methods do not align the interface to the cell bound-
aries, they usually track the interface in an indirect way. Two wide-
spread fixed grid schemes are the volume of fluid (VOF) approach
of Hirt and Nichols [3] for incompressible flows and the level set
method [4,5]. While the VOF approach is based on the volume con-
servation and reconstructs the interface topology from the discrete
volume fractions, the level set method represents the interface by
the zero level set of a continuous function that is often equivalent
to a signed distance function in relation to the interface.

Across the interface, the material properties of the fluids are
considerably changing and this has to be handled by the numerical
approach. For compressible flows special attention has to be paid
on the different EOS on either side of the material interface. As
the fluids can differ significantly in their properties, their EOS are
also very different in nature. Problems may arise due to the numer-
ical smearing of the density across the material interface that rep-
resents a contact discontinuity [6]. Numerical schemes for the
simulation of compressible two-phase flows are usually density-
based flow solvers that use density and energy as primary variables
for the solution process. If there is no special remedy applied at the
interface location, density-based numerical schemes for multifluid
flows are prone to unphysical pressure oscillations when smeared
density values are inserted into the EOS [6].

Different strategies can be followed to prevent such oscillations
and to handle the jump in the EOS. Based on the way the thermo-
dynamic transition across the interface is addressed, sharp and dif-
fuse interface approaches can be distinguished.

Sharp interface approaches always treat the interface as distinct
discontinuity and prevent a density smearing. The well-known
ghost fluid approach of Fedkiw et al. [7] is such a sharp interface
scheme. It is based on the solution of two independent single-
phase Riemann problems at the interface location. Fedkiw uses a
level set method to track the interface and ghost cells are intro-
duced in its vicinity. The corresponding ghost values are computed
by an entropy based extrapolation and finally a standard Riemann
solver can be used to compute the fluxes at the material interface.

For the diffuse interface approaches, the density jump as well as
the thermodynamic transition are smeared consistently across the
interface. For this purpose, the EOS are modified in such a way that
the insertion of the smeared density does not cause unphysical
oscillations. Although these methods efficiently eliminate the pres-
sure oscillations some of them suffer from the fact that they are
based on the non-conservative flow equations. This limits their
range of applicability to the weakly compressible regime as the
accurate simulation of shock waves is impossible. For fluids obey-
ing the stiffened gas EOS, Saurel and Abgrall [8] introduced a
numerical method that imposes conditions on the energy to guar-
antee that the pressure stays constant across the interface. This
scheme is also not fully conservative, but it allows the simulation
of strong shock waves.

Our objective is the extension of the incompressible two-phase
flow solver FS3D (Free Surface 3D) [1,9,10] to the compressible re-
gime. Hence, we base our approach on a pressure-based compress-
ible method, which equals the incompressible one when the Mach
number tends to zero. The singular incompressible limit of the
compressible flow equations can be treated by taking the pressure
as primary variable and using the multiple pressure variables
(MPV) method [11] that builds upon an asymptotic pressure
decomposition. The compressible pressure is decomposed into
the sum of a hydrodynamic pressure times M2 and a thermody-
namic background pressure, where M denotes a global reference
Mach number. The background pressure has to be constant in
space and may vary only in time. In the incompressible limit this
pressure is the constant thermodynamic pressure that satisfies
the EOS, while the other pressure term is a pure hydrodynamic
one and is determined by the incompressible flow equations

without any dependency on the EOS. In the compressible regime,
the sum of the pressure terms has to satisfy the EOS to be consis-
tent with the compressible flow equations. Using this pressure
decomposition, the MPV approach offers the possibility to extend
an existing pressure-based incompressible code to the compress-
ible regime. The basis for this development is the conservative
MPV formulation as described in the paper [12] for single-phase
flows and the EOS of a perfect gas. A similar approach has recently
been proposed by Cordier et al. [13] for a general EOS. These
authors also verify the asymptotic-preserving property for the
incompressible limit.

In this paper we present the extension of the incompressible
flow solver to the three-dimensional compressible case and restrict
ourselves in this first step to the inviscid case and do not consider
phase transitions. The approximation of phase changes needs a
thermodynamic consistent modeling of the diffuse interface and
is out of the scope of this paper. We basically keep the well-known
spatial and temporal discretization of the incompressible flow sol-
ver: The flow equations are discretized by a finite volume method
on a Cartesian, staggered grid with second order upwind fluxes and
a semi-implicit time discretization. The resulting linear system for
the pressure is solved by a multigrid method. Both phases are
described by a stiffened gas EOS. Due to the use of pressure as pri-
mary variable, it is possible to avoid pressure oscillations applying
a simple interface treatment: The EOS is sharply switched at the
phase interface, while the density is smeared over a few grid cells
due to the numerical dissipation. We show that this numerical ap-
proach in combination with a pressure-based method is able to
handle the propagation of pressure waves in gases and liquids very
well. Even in the presence of large density jumps with shock wave
interactions the results are free of spurious oscillations.

The outline of the paper is as follows. In the next section, the
governing equations are presented. Afterwards, the MPV method
and its extension to the treatment of three-dimensional multi-
phase flows are described. It is shown how the compressible pres-
sure-based flow solver treats the interface and that the first order
MPV scheme always guarantees an oscillation-free behavior at the
interface. This is followed by the presentation and discussion of
computational results that prove the capability of the MPV ap-
proach to simulate compressible two-phase flows. Finally, the pa-
per closes with a short conclusion and a perspective on future
work.

2. Governing equations

This section gives an overview over the equations that build the
basis of our numerical scheme.

2.1. Compressible Euler equations

We use the three-dimensional conservation equations for mass,
momentum and total energy for inviscid flows without gravita-
tional and external forces and heat conduction in compressible
gas dynamics that are known as the Euler equations

@q0

@t0
þ r � ðq0v0Þ ¼ 0; ð1Þ

@ðq0v0Þ
@t0

þ r � ðq0v0Þ � v0½ � þ rp0 ¼ 0; ð2Þ

@e0

@t0
þ r � v0 e0 þ p0ð Þ½ � ¼ 0: ð3Þ

Here, q0 denotes the density, p0 the pressure, v0 the velocity vector
and e0 the total energy per unit volume. Dimensional variables are
marked by the superscript 0. The system (1)–(3) has to be closed
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