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a b s t r a c t

A second-order time-accurate implicit scheme is constructed for the Lagrange-Remap (LR) strategy. The
numerical flux is given by the simple acoustic Riemann solver. The Riemann solver is modified by intro-
ducing a scaling coefficient so that the scheme can deal with very subsonic (low Mach) flows as well as
supersonic flows. The Lagrange step solves implicitly the hyperbolic equations of pressure and velocities
under the isentropic assumption by the trapezoidal time integration method. The new LR scheme main-
tains exactly the conservation of mass, momentum and energy, and it is general for materials with any
equation of state. Numerical tests show that the LR scheme using the simple but general Riemann solver
can resolve shock waves sharply for supersonic flows, and resolve well the acoustic waves in low Mach
number flows as low as M = 0.001.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The upwind schemes, proved to be able to monotonely capture
a discontinuity with the minimum amount of artificial viscosity for
the 1-D scalar hyperbolic equation, have gained great acceptance
in industrial applications and academic studies [1], especially for
compressible flows associated shock waves. The Euler equations
consist of two acoustic waves that propagate typically at the sound
speed, and other waves (contact and shear waves) that move at the
speed of fluid particle. The realization of a upwind discretization
for the system of the Euler equations is not simple, since the waves
are generally not unidirectional. The Godunov-type approach
solves this problem by pursuing an exact or approximate solution
to wave interactions, while the flux vector splitting approach
decomposes the system such that each subsystem is unidirec-
tional. For multi-dimensional Euler equations, the extension
based on the 1D Riemann upwind solvers, which neglects the
contribution of shear waves, contains a large amount of empiri-
cism and must therefore remain suspect, although these schemes
have been successfully applied to practical problems. Many
Godunov-type schemes contain subtle flaws that can cause
spurious solutions [2].

On the other hand, the acoustic waves are an essential ingredi-
ent in compressible flows, but they even do not explicitly appear
in incompressible flows. Undesirable effects of low Mach
number flows on an upwind scheme without any modification
include low convergence speed and loss of accuracy [3]. There
are at least two techniques to solve the problem. One is the precon-

ditioning method that performs a matrix operation on the original
Jacobian matrix such that the coefficients of numerical viscosity
terms are of the similar magnitude in the low Mach limit (e.g.
[4,5]). Another method directly rescales the coefficients of numer-
ical viscosity in the flux vector splitting [7–9] and the Riemann
solvers [10–12] among many others. It is clear that the acoustic
waves should be treated differently at least in the low Mach limit,
preferably treated separately from the other waves that move at
the flow velocity.

The LR two-step method is able to separate the acoustic waves
from other waves. The method is closely related to the arbitrary
Lagrangian–Eulerian (ALE) method [13]. The ALE provides a gen-
eral framework that can be used to combine the best properties
of Lagrangian and Eulerian methods. Brief reviews of recent La-
grange schemes and remapping methods can be found in [14,15].
If the solution is remapped onto the original Eulerian (spatially
fixed) mesh without rezoning, it behaves as the Eulerian methods
on a fixed mesh. Although the idea of this simple LR strategy was
proposed in [16] long before the appearance of ALE, it is often re-
garded as a special case of ALE (e.g. fixed-mesh ALE [17]). The LR
strategy can be realized without explicitly dealing with node
movements, while maintaining the advantages of the Lagrangian
schemes. In the pioneer work of van Leer[18], a second-order LR
scheme was constructed via piecewise linear reconstruction,
known as the MUSCL approach, in which the exact Riemann solver
was used, and the 2D extension was realized by dimensional
splitting.

The approximate Riemann solver can be used in the Lagrange
step. Rider [19] investigated and compared the behavior of a few
approximate Riemann solvers in the first-order LR schemes. All
first-order schemes suffer from over diffusivity more or less. With
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the help of monotonicity-preserving anti-diffusion mechanism, the
contact and the material interfaces can be resolved sharply in one
grid cell [20,21], although the overall accuracy remains first-order
accurate. There is a renewed interest in applying the strategy for
compressible multiphase flows[21,22]. An anti-diffusive scheme
was developed for a five-equation model [21]. The second-order
LR strategy is used instead for the compressible multiphase flows
following the MUSCL approach, and two-dimensional extension
is again based on dimensional splitting and restricted to the Carte-
sian mesh [22]. In principle, higher orders may be achieved by
polynomial reconstructions [23].

In 7th ICCFD, we formulated the LR scheme as the finite volume
method so that it can be implemented for unstructured grids with-
out recourse to dimensional splitting, and proposed a second-order
explicit scheme based on the acoustic Riemann solver [25], the sim-
plest one that may resolve a contact discontinuity. In this paper, the
implicit treatment of the acoustic waves is reported. It turns out that
the compressible and almost incompressible flows ranging from
very subsonic to supersonic can be resolved using the acoustic Rie-
mann solver with a simple modification in the LR scheme.

2. Finite volume LR formulation for the Euler equations

Consider the finite volume discretization of the conservation
laws,

XiU
nþ1
i ¼ XiU

n
i � Dt

X
k

F�ikSik; ð1Þ

where Fk is the vector of numerical flux at volume face k with the
length in 2D or the area in 3D, Sik. Symbols Dt and Xi are the time
step and the volume in the fixed Eulerian grid respectively. The flux
vector is basically

F ¼ unUþ P; ð2Þ

where conservative quantities U are (q, qu, qE)T, and P = (0, pns,
pun)T, where ns is the unit outward normal vector, and normal
velocity un = u � ns. The specific total energy contains the specific
internal energy and kinetic energy, E = e + u � u/2. The conservation
laws must be supplemented by the equation of state (EOS), p = p(q,
e). The numerical method to be introduced is designed for any fluid,
either gas or liquid; no parameter optimization or tuning will be
made for specific EOS, such as perfect gases.

In the LR framework, the conservative scheme (1) is solved in a
two-step fashion as follows,eXi
eUi ¼ XiU

n
i � Dt

X
k

P�ikSik; ð3Þ

XiU
nþ1
i ¼ eXi

eUi � Dt
X

k

u�n eU�� �
ik

Sik; ð4Þ

which correspond to the Lagrange step and the remap step respec-
tively. The symbols with tilde denote the intermediate quantities in
the Lagrange step, in order to distinguish them from those in the next
time step. One may recover the original finite volume formulation (1)
immediately by adding two relations (3) and (4). The symbols with
asterisk are defined in the numerical flux. Pressure p⁄ and velocity
u�n are to be given by the acoustic Riemann solver [24]. The volume
of the cell in the Lagrangian frame follows:eXi ¼ Xi þ Dt

X
k

u�n
� �

ikSik: ð5Þ

The state of the conservative quantities eU� are interpolated
from those updated by (3) and (5). The remap step (4) is simply
the geometric remap procedure, which is the same for both explicit
and implicit schemes. A geometric interpretation of the remap step
is given in [25].

2.1. Implicit Lagrange step

The explicit scheme has been reported and evaluated in [25],
and this work will focus on the implicit implementation of (3).
Since the change of the conservative quantities of a Lagrangian cell
is solely determined by pressure and velocity at grid face, as seen
from the elements of flux vector P in the numerical flux of (3), it
is reasonable to choose primitive variables. Consider the conserva-
tion of momentum in the Lagrangian frame,

q
Du
Dt
þrp ¼ 0; ð6Þ

and the conservation of energy under the isentropic assumption,1

q
I2

Dp
Dt
þr � u ¼ 0; ð7Þ

where I = qc is the acoustic impedance with isentropic sound speed
c2 ¼ ðDp

DqÞs. Note that the continuity equation becomes the same as
(7) in the Lagrangian frame. Performing the time integration for
the finite volume formulation of a control volume with mass, mi = -
qiXi, one obtains

mi
~unþ1 � un

Dt
þ b
X

k

p�ðnþ1Þ
ik Sik þ ð1� bÞ

X
k

p�ðnÞik Sik ¼ 0; ð8Þ

mi

I2
i

~pnþ1 � pn

Dt
þ b
X

k

u�ðnþ1Þ
ik � Sik þ ð1� bÞ

X
k

u�ðnÞik � Sik ¼ 0: ð9Þ

It is the standard backward Euler method for b = 1, and the trapezoi-
dal method (b = 0.5) is used throughout the paper for achieving sec-
ond-order accuracy in time. Pressure ~pnþ1 and velocity ~unþ1 are the
intermediate quantities in the Lagrange step, so they are marked
with the tilde in order to distinguish them from those in the next
time step pn+1 and un+1. The outward surface normal, Sik = Sikns, is
defined on the Eulerian grid. Following the Godunov-type approach,
the quantities at grid interface (pressure p⁄ and velocity u�n) are gi-
ven by the Riemann solution. The well-known acoustic Riemann
solver is adapted for all speed flows,

p� ¼ IRpL þ ILpR

IL þ IR þ fa
ILIR

IL þ IR ðu
L
n � uR

nÞ; ð10Þ

u� ¼ ILuL
n þ IRuR

n

IL þ IR þ 1
fa

1
IL þ IR ðp

L � pRÞ; ð11Þ

where IL = qLcL, and IR = qRcR are acoustic impedances on two sides.
ðpL;uL

nÞ and ðpR;uR
nÞ are pressure and normal velocity on two sides of

the grid interface. Note that the acoustic Riemann solver is the exact
solution to the wave pattern of two acoustic waves with a contact
or a material interface between; it might be the simplest approxi-
mate Riemann solver for fluids with any EOS.

The Riemann solver is identical to the classic acoustic Riemann
solver when fa = 1. The acoustic Riemann solver, which assumes
the wave configuration of two sound waves with an interface be-
tween, is a special case of a more general solution derived in [24]
for the Lagrange scheme. The first term on the right-hand side of
(10) and (11) corresponds to the weighted average of pressure
and velocity respectively; it becomes the simple algebraic average
in the low Mach limit. The second term corresponds to the artificial
viscosity term that is required to maintain the stability of an up-
wind scheme, and to suppress possible numerical oscillations
around a sharp discontinuity in compressible flows. Notice that
the coefficient of numerical viscosity term in (10) is of the order
of O(c) and that in (11) is of O(1/c). In the incompressible limit,

1 The isentropic assumption does not imply that the proposed Lagrange scheme is
valid only for isentropic flows. The use of isentropic sound speed is common in the
analysis and design of numerical techniques for compressible flows with shock
waves, for instance.
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