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a b s t r a c t

We present a spectral-element discontinuous Galerkin lattice Boltzmann method to solve incompressible
natural convection flows based on the Bousinessq approximation. A passive-scalar thermal lattice
Boltzmann model is used to resolve flows for variable Prandtl number. In our model, we solve
the lattice Boltzmann equation for the velocity field and the advection–diffusion equation for the
temperature field. As a result, we reduce the degrees of freedom when compared with the passive-scalar
double-distribution model, which requires the solution of several equations to resolve the temperature
field. Our numerical solution is represented by the tensor product basis of the one-dimensional Legen-
dre–Lagrange interpolation polynomials. A high-order discretization is employed on body-conforming
hexahedral elements with Gauss–Lobatto–Legendre quadrature nodes. Within the discontinuous
Galerkin framework, we weakly impose boundary and element-interface conditions through the numer-
ical flux. A fourth-order Runge–Kutta scheme is used for time integration with no additional cost for mass
matrix inversion due to fully diagonal mass matrices. We study natural convection fluid flows in a square
cavity and a horizontal concentric annulus for Rayleigh numbers in the range of Ra = 103–108. We
validate our numerical approach by comparing it with finite-difference, finite-volume, multiple-
relaxation-time lattice Boltzmann, and spectral-element methods. Our computational results show good
agreement in temperature profiles and Nusselt numbers using relatively coarse resolutions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection flow simulations have been an active area of
research for many years. These flows are set in motion by a buoy-
ancy force that occurs as a result of a small density gradient and
the presence of an external force such as gravity. Understanding
the behavior of natural convection flows is important in nuclear
reactor design, cooling of electronic equipment, and determination
of heat loss from steam pipes.

In recent decades, thermal lattice Boltzmann methods (TLBMs)
have emerged as reliable methods for simulating natural
convection flows. TLBMs generally fall into two approaches: the
multispeed approach and the passive-scalar approach. The
multispeed approach is an extension of the isothermal model,
where the density distribution function is solely used to describe

the mass, momentum, and temperature [1,2]. The passive-scalar
approach uses additional equations, independent of the density dis-
tribution, to describe the temperature. When viscous heating and
compression work due to pressure are negligible, as is the case in
most natural convection flows, the temperature does not influence
the momentum—it is advected and diffused ‘‘passively’’ [3].

The multispeed approach does have limitations. In particular, it
suffers from severe numerical instability and restricts the Prandtl
(Pr) number to a fixed quantity [1]. However, numerous models
have been proposed to rectify these issues. In [4], McNamara
et al. were able to improve the stability by implementing a
Lax–Wendroff advection scheme. Using higher-order symmetric
velocity lattices, Vahala et al. [5] showed better stability properties
over lower-order symmetric lattices. Prasianakis and Karlin [6]
built a model using the standard velocity lattice (D2Q9), which
incorporated equilibrium expansions up to the fourth order in
velocity and correction terms to the lattice Boltzmann equation
(LBE) in order to enhance stability for high Rayleigh number (Ra)
flow. The correction terms also allowed their model to investigate
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variable Pr. Watari and Tsutahara [7] proposed a finite-difference
lattice Boltzmann method (FDLBM) that utilized a second-order
upwinding difference scheme to improve stability. And to investi-
gate variable Pr, Soe et al. [8] introduced an extended collision ma-
trix without affecting the stability.

One version of the passive-scalar approach utilizes a double-
distribution model based on the multiple component LBE proposed
by Shan and Chen [3]. In this approach, one component (i.e., density
distribution function) represents motion of the fluid and the other
(i.e., energy distribution function) describes the passive tempera-
ture field. Two independent relaxation times are utilized for each
component, thus allowing for variable Pr. In [9], Shan showed that
the double-distribution model enhanced numerical stability over
the multispeed approach for high Ra. He et al. [10] also proposed
a double-distribution model in which the density distribution
function recovers the macroscopic mass and momentum variables
while an internal energy density distribution function recovers
the energy. Because the model in [10] directly solves evolution of
the internal energy, a Chapman–Enskog multiscale expansion
analysis shows that viscous heat dissipation and compression work
are correctly recovered in the macroscopic energy equation.

Since the work of He et al. [10], simpler double-distribution
models have been proposed in the incompressible limit. Both
Palmer and Rector [11] and Peng et al. [12] neglected viscous
dissipation entirely and dropped complicated spatial gradients to
study Rayleigh-Bénard convection and natural convection within
a square cavity. In [13], Shi et al. proposed a double-distribution
model that incorporates only viscous heat dissipation to study
thermal Couette flow. Guo et al. [14] proposed a double-
distribution model based on the total energy, which allows for a
simpler computation of viscous dissipation and compression work.
Others have proposed smaller lattice velocity models for the
energy distribution functions [15].

The double-distribution model has also been used on irregular
or unstructured grids to handle natural convection flows. Dixit
and Babu [16] employed an interpolation supplemented lattice
Boltzmann method [17] on a nonuniform mesh to study natural
convection in a square at Ra > 106. Shi et al. [18] extended the
method proposed by Guo and Zhao [19] and used FDLBM on the
polar representation of the double-distribution model. Shu et al.
[20] used a Taylor series expansion and least-squares-based lattice
Boltzmann method (TLLBM) to solve the double-distribution
model. The TLLBM has proved useful for complex geometries
[21]. Finite-volume lattice Boltzmann methods (FVLBMs) have also
been proposed and implemented on unstructured meshes [22].
Although FVLBM has been applied to isothermal flows, an exten-
sion to either a multispeed or double-distribution model seems
feasible.

Another passive-scalar approach is to solve the macroscopic
energy equation for the temperature and couple it with the
isothermal LBE in order to resolve the velocity. This approach is
beneficial for flows with negligible viscous dissipation, and there-
fore the macroscopic energy equation simplifies to an advection–
diffusion equation for the temperature. This model eliminates the
need to solve multiple equations as is required in the double-
distribution model. In addition, flows with variable Pr number
can be investigated. Lallemand and Luo [23] proposed this type
of approach, solving the advection–diffusion equation for the tem-
perature using a finite-difference method. They showed enhanced
stability for simple Cartesian geometries such as a cubic box. For
complex geometries, however, finite-difference stencils may not
have the same symmetries as the underlying discrete velocity,
and extrapolation might cause loss of local conservation.

Implementation of physically accurate hydrodynamic and
thermal boundary conditions is crucial in both the multispeed
and passive-scalar models. Extensive research on boundary

treatment techniques has been done and we refer the reader to
the following literature: [24–30].

In this paper, we present a spectral-element discontinuous
Galerkin (SEDG) method to solve a passive-scalar thermal lattice
Boltzmann model. Our numerical scheme is extended from the pre-
viously developed spectral-element discontinuous Galerkin lattice
Boltzmann method (SEDG-LBM) presented in [31]. We include a
force term, resulting from the Bousinessq approximation [9], into
the discrete Boltzmann (DB) and lattice Boltzmann (LB) equations.
This approach allows us to examine flows in the incompressible
limit (i.e. for low Mach (Ma) numbers and small density fluctuations).

We use the SEDG-LBM to solve the LBE for the density
distribution function thereby resolving the mass and momentum
conservation laws. With proper coupling to the LBE, we then deter-
mine the temperature field by solving the advection–diffusion (i.e.
energy) equation. We use a high-order spectral-element discontin-
uous Galerkin (SEDG) discretization based on the tensor product
basis of the one-dimensional Legendre–Lagrange interpolation
polynomials. Our SEDG discretization is employed upon body-
conforming hexahedral elements with Gauss–Lobatto–Legendre
(GLL) grid points. Bounceback boundary conditions are applied
weakly through the numerical flux without the additional effort
of interpolation for complex geometries as required by other lattice
Boltzmann (LB) schemes [25–27].

The paper is organized as follows. In Section 2, we present
the governing equations, namely, the LBE with a Bousinessq
approximation and the advection–diffusion equation. In Section 3,
we discuss the formulation of our numerical scheme. Section 4
presents computational results and their validation for natural
convection heat transfer in a square cavity and horizontal concen-
tric annulus. We discuss our conclusions in Section 5.

2. Governing equations

In this section we describe our governing equations for natural
convection flows. We derive the lattice Boltzmann equation with a
forcing term and the formulation for the collision and streaming
steps. We also present a simplified macroscopic energy equation
for incompressible natural convection flows.

2.1. Lattice Boltzmann equation: Collision and Streaming

We write the discrete Boltzmann equation with a forcing term,
where the collision term is approximated by the Bhatnagar–
Gross–Krook, or single-relaxation-time, operator [32]:
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where fa (a ¼ 0;1; . . . ;Na) is the particle density distribution
function defined in the direction of the microscopic velocity ea; k is
the relaxation time, and Na is the number of microscopic velocities.
We consider the two-dimensional 9-velocity model (D2Q9)
associated with ea ¼ ð0;0Þ for a ¼ 0; ea ¼ ðcos ha; sin haÞ with
ha=ða� 1Þp=2 for a = 1, 2, 3, 4; and ea ¼

ffiffiffi
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/a=ða� 5Þp=2þ p=4 for a = 5, 6, 7, 8. The second term on the
right-hand side of Eq. (1) represents the force term. G is the external
body force, depending on space and time. We consider a Bousinessq
approximation for G. Details on the formulation for G are discussed
in Section 4. The equilibrium distribution function is given by
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where q is the density; u is the macroscopic velocity;
t0 ¼ 4=9; ta¼1;4 ¼ 1=9, and ta¼5;8 ¼ 1=36 are the weights; and
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