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a b s t r a c t

Direct numerical simulation of noise generated by low speed flows requires strong numerical con-
straints related to the different scales in space and time for the dynamics of the flow and the propa-
gation of sound waves. At low Mach numbers, the aeroacoustic hybrid approaches initiated by
Hardin and Pope (1994) [5] based on separate calculations for the flow and for the acoustic radiation,
are therefore attractive. In this paper, we show that such methods can be used for the general case of
non-constant density or temperature. The starting point is an asymptotic expansion of the full Navier–
Stokes equations that gives a set of equations that retain the presence of density and temperature inho-
mogeneities, allowing access to the dynamic quantities without the stability constraints related to
acoustic waves. Then starting from the solutions of flow fluctuating quantities, we propose several pos-
sible developments of the equations to obtain the acoustic field. They lead to different sets of equations
and source terms depending on the level of simplifying assumptions: the Perturbed Low Mach Number
Approximation (PLMNA) or the linearized Euler equations (LEE) linearized with respect to the mean
flow. An isothermal and a non-isothermal spatially evolving mixing layer are taken as test problems.
The solutions of the proposed hybrid methods show a satisfactory behavior compared with the refer-
ence solution given by a compressible DNS.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computational aeroacoustics has established itself as a power-
ful tool to predict noise generated aerodynamically [1]. Two broad
classes of methods are available. The first class performs direct
noise computations, whereby both the near-field flow dynamics
and the far-field sound radiation are computed simultaneously
by solving the compressible Navier–Stokes equations (see for in-
stance [2–4]). A clear advantage of this approach is that the con-
nection between the flow dynamics and the sound produced
occurs in a natural way and requires no model for the sound
source. However, this method requires large computational re-
sources and is particularly inefficient in the low Mach number
range, due to stability restrictions. This has motivated the second
class of methods, known as hybrid acoustic methods, such as the
splitting technique developed by Hardin and Pope [5]. In hybrid
methods, the calculation of the flow dynamics and that of the
sound produced are performed in two different stages. The flow
dynamics, calculated during the first stage, is used to calculate a
source term that is passed on to the acoustic solver in the second

stage. This strategy implies that there cannot be any feedback of
the sound to the flow dynamics. This may not always be the case,
as for example during the calculation of the sound produced by a
diaphragm in a duct [6].

For Mach numbers less than about 0.3, when the flow dynamics
are calculated using an incompressible solver, these methods can
lead to a speed-up factor inversely proportional to the Mach num-
ber over the direct noise computation method [7]. Moreover, hy-
brid methods make it possible to compute the sound produced
for a whole range of Mach numbers, based on a single incompress-
ible flow solution. One drawback of hybrid methods is that they
rely on a splitting of the variables which is partially arbitrary,
meaning that the definition of the source term may also vary from
one formulation to the other.

In hybrid methods, it is often assumed that the incompressible
Navier–Stokes equations can be used to compute the flow [5,7–9].
While the dynamics are close to incompressible at low Mach num-
bers, the flow may have temperature inhomogeneities that cannot
be handled in the strictly incompressible context (see Eq. (9) be-
low). However, density and temperature inhomogeneities, when
not of an acoustic nature, can be accounted for by using a low Mach
number solver [10]. Such a Low Mach Number Approximation
(LMNA) has a stability restriction which is equivalent to that of
the incompressible solver; this is used in combustion problems
[11,12]. It has also been used in acoustic hybrid methods [13–17]
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although few works apply the method to study the acoustic
radiation of a non-isothermal flow: in Ref. [14], the flow obtained
using the LMNA is used as input for a non-isothermal form of
the Lighthill analogy to compute the sound radiated by a non-iso-
thermal temporal mixing layer. In ref [17], the flow for a non-iso-
thermal temporal mixing layer is once again calculated using the
LMNA and the linearized Euler equations (LEE) are solved with a
pressure gradient source term in the momentum equations to
compute the sound. The source term is obtained by using an anal-
ogy. The acoustic results are successfully compared with that from
a direct noise calculation, which shows the potential of the LMNA
for non-isothermal flows.

The noise computation in hybrid methods is carried out by
using perturbed equations together with corresponding source
terms, which depend on the precise formulation chosen by their
authors. In any case, the perturbed equations are connected to
the linearized Euler equations [3,9,16,18]. A well known problem
with the LEE is that they can sustain unstable vortical modes that
can corrupt the noise computation. One possibility to avoid this is
to work in the frequency domain[19]. In the time domain, one
strategy is to modify the equations so that they no longer support
the unstable mode [3,18,20]. This can be done, for example, by
removing the term v 0dU=dy responsible for instability in a mean
shear flow UðyÞ. However, a detrimental effect of this method is
that some sound/flow interactions are neglected [21]. Yet another
possibility is to keep the LEE unchanged, but to use a source term
which reduces the vortical mode excitation (a rotational free
source term) such as a pressure gradient in the momentum equa-
tion [16].

In the present paper, the objective is to develop a hybrid
method for a low Mach number flow and to assess its use for pre-
dicting noise radiation by isothermal and non-isothermal mixing
layers. The Low Mach Number Approximation (LMNA) flow solver
is first presented in Section 2. The acoustic solver based on a per-
turbation of the compressible Navier–Stokes equations, the Per-
turbed Low Mach Number Approximation (PLMNA) is then
presented in Section 3. The perturbation method used to obtain
the acoustic solver differs from the analogy-based approach fol-
lowed in [16,17] and is mathematically more rigorous. The LEE,
linearized around a time-averaged flow field, are retrieved from
the PLMNA, and the source term is discussed. Following the
method of Seo and Moon [18], filtered versions of the PLMNA
and LEE are presented in Section 4, which have reduced vorticity.
A propagation equation based on the LEE is proposed in Section 5
to compare the present methods with Lilley’s and Ribner’s analo-
gies. To validate the hybrid method, a spatially evolving mixing
layer with or without temperature gradients and its sound radia-
tion are computed in Section 6 using several source terms. A spa-
tial mixing layer is a more demanding configuration than the
temporal mixing layer used in [14,17] due to more stringent
boundary conditions. The results are compared to those provided
by direct noise computation [4], and conclusions are given in Sec-
tion 7.

2. The Low Mach Number Approximation (LMNA)

The first part of the hybrid approach consists in calculating the
evolution of the variables in the flow. In the present study, this is
done by solving a low Mach number limit of the Navier–Stokes
equations [11,12,15,16]. In this limit, the acoustic waves are fil-
tered out so that they do not constrain the stability limit. However,
temperature and density inhomogeneities are retained, which are
necessary for dealing with non-isothermal flows. The equations
are obtained from the full non-dimensionalized Navier–Stokes
equations that read:
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where q; ui;p; T are the density, velocity, pressure, and temperature
respectively. Re;M and Pr stand respectively for the Reynolds, Mach
and Prandtl number, and c is the ratio of specific heats at constant
pressure and volume, l ¼ lðTÞ ¼ l�=l�ref is the normalized viscosity
(calculated through the Sutherland law). The internal energy per
unit volume qe (for an ideal gas) and the viscous stress tensor sij

are as follows:
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with k�refh
the thermal conductivity. The

subscript h indicates a normalization for the hydrodynamic solver,
and a different normalization will be encountered below for the
acoustic solver.

For low Mach numbers (typically M < 0:3), the parameter
� ¼ cM2 is small and is used to conduct an asymptotic expansion
of the equations. The variables are expanded according to:
q ¼ q0 þ �q1 þ � � � ; ui ¼ ui0 þ �ui1 þ � � �
T ¼ T0 þ �T1 þ � � � ; p ¼ p0

� þ p1 þ � � � :
ð6Þ

Introducing these expansions into Eqs. (1)–(4), an asympotic
expansion of the Navier–Stokes equations is obtained. Keeping
the lowest order terms in � provides the set of LMNA equations
as developed by McMurtry et al. [11]:
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Note that Eq. (11) actually comes from the boundary condition for
an unbounded domain.

Here the acoustic waves are filtered out [10] but density fluctu-
ations that are not of an acoustic nature are retained. Thus, the sta-
bility of the LMNA solver is equivalent to that of an incompressible
solver. In the present study, density fluctuations are caused by a
gradient of temperature, where temperature and density are re-
lated by Eqs. (10) and (11). The LMNA equations requires solving
a Poisson’s equation that is slightly modified compared to the
one solved for an incompressible case. The method presently used
is described in [11,16], an alternative method being given in [22].

3. Models for solving the acoustic problem

The hydrodynamic quantities are calculated by solving the
LMNA system. Then two different strategies are used to compute
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