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a b s t r a c t

A new extension of matrix approach is proposed to calculate the equilibrium constants of coordinated

solvent substitution in a metal ion first salvation shell in the mixed solvent system. The proposed

method allows reducing the number of independent variables, necessary to calculate the fractions of

species in solution. The equilibrium model of MeCN substitution with DMF and DMSO in the presence

of Cu(II) ion for the assessment of structure of intermediate species is presented and verified. The

distribution diagrams of Cu(II) species in mixed organic solvents have been analyzed using the modified

matrix method. The intrinsic equilibrium constants K of the first solvent molecule replacement in the

Cu(II) coordination shell and the correction for the mutual influence between the solvent molecules as

ligands in the successive complex formation (cooperativity parameter w) in acetonitrile solution have

been calculated from the fitting procedure. It is shown that anticooperative substitution of MeCN by

donor ligands in the first coordination shell of the Cu(II) ion is always governed by the change of

coordination number during the stepwise process.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The copper(II) ion behavior in pure and mixed solvents
systems is governed by an intricate balance of solvated com-
plexes. The better understanding of these phenomena is consid-
erable for the theory of coordination compounds and also has
practical value [1]. Acetonitrile solutions are of particular interest
because in this solvent, Cu(II) exhibits catalytic properties [2,3].
The use of acetonitrile as the reaction solvent proved to be crucial
for catalysis, both to function as a labile ligand for copper, as well
as an agent to minimize hydrolytic catalyst poisoning [4]. The
study of mixed solvents systems was performed for the develop-
ment of an a priori criterion of choice of the best solvent’s
composition for Cu(II) catalytical activities in Cu(II)-catalyzed
reactions [5]. To fully exploit these properties, however, we need
to better understand the interactions of the constituents. The
problem appears because addition of donor ligands or solvents
in CH3CN solutions containing Cu(II) ion leads to the formation of
numerous species. It was assumed that molecules of these
solvents coordinate to the metal ion to form mononuclear com-
plexes [1,6]. But, it is not always possible to determine stability
constants precisely and even the correct number of mixed-solvate
complexes [7,8]. In previous papers [9,10] isolation of those
interactions and gaining insight into the complexation behavior

by performing computational studies of the simplified models for
those composites based on the matrix method have been pro-
posed. The variability of species structure with stepwise filling of
the first coordination shell was discussed for cadmium and
copper ions [1]. On the basis of spectral data for compounds of
copper(II) it was concluded that the structure of complexes varies
in different solvents [11]. In particular, it is interesting to analyze
systems Cu(II)–CH3CN–DMF for which solvation structure of
Cu(II) ion has been investigated by the X-ray diffraction in
solution [12]. The matrix method has not been previously over-
spread to describe the filling of the inner coordination sphere in
mixed solvent solution, accompanied by changes in the geometry
of the coordination polyhedron.

The aim of this work is to analyze the distribution of species
during successive resolvation of Cu(II) in non-aqueous solutions,
and to calculate the equilibrium parameters and cooperativity of
the selective binding of a solvent from solvent’s mixture using the
matrix method.

2. Computational details

It is well known that in the simplest case, the addition of a
ligand to the central ion or neutral molecule in inert solvents, as
well as in the gas phase, is pure association. For these systems,
using the nearest neighbor interaction approximation allows
reduction of the dimensionality of the space of independent
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variables required to describe titration curves and species dis-
tribution for successive mononuclear homoleptic complexes for-
mation [13]. For instance, provided that addition of a ligand
follows an additive scheme and that complexes have tetrahedral
structures, two independent parameters K and o (K is the
intrinsic binding constant for a first ligand and o is a correction
for mutual influence) are sufficient for the description of ligand
coordination instead of four constants required in a traditional
modeling of independent stepwise complexation [14]. The ther-
modynamic description of ligands binding to an ion in solution is
the same as adsorption of ligands onto a one-dimensional homo-
geneous lattice as described in [15–19]. The central concept for a
ligand binding on a matrix of vacancies is that an expression
describing the change in free energy of a system as a function of
the equilibrium concentrations is given by

DF=RT ¼ lnð½MXn=½M�Þ�lnmn�n2ln K½X�þo ð1Þ

here [MXn], [M], [X] are the equilibrium concentrations of the
complex with n coordinated ligands, and complexing components
in solution; K is the binding constant; o is a parameter of mutual
influence; R is the universal gas constant, T is the temperature;
mn¼N!/n!(N�n)! is the number of microstates which is equal to
the number of combinations of N on n, related with the number of
possible ways of coordinating N ligands to the central ion having
N vacant sites

PN
n ¼ o mn ¼ 2N .

The mathematical basis of the matrix method differs from the
traditional model of independent stepwise complexation. Instead
of stepwise equilibrium constants first the ligand binding intrinsic
constant and the parameter of the ligands’ mutual influence are
calculated. The assumption that the addition of another ligand to
the central ion is determined by the location of previously joined
ligands allows us to calculate the ratio between the stepwise
equilibrium constants. Let us consider that the coordination
polyhedron geometry does not get altered in the process of
stepwise complexation i.e. the location of coordination vacancies
is fixed. In applying this approach the model presented allows to
calculate the concentrations matrix of all equilibrium species in
the system by the equation:
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here S¼ 1þm1K X½ �þm2K2o2U X½ �2þ � � � þmNKNoN X½ �N ; Ks
¼

½1 K K2
� � � KN �;U X½ �s ¼ ½1 ½X� ½X�2 � � � ½X�N �T; s¼

½0 1 2 � � � N �; w¼ ½1 m1 m2o2 � � � mNoN �; � indi-

cates the signs of array multiplication, matrices multiplication
and T denotes the matrix transpose; CMe is the total concentration
of central ion. Using Eq. (2) one can calculate augmented
concentrations matrix Cf of species formed in a system at all
concentrations of ligand. In the simplest case of six ligand binding
(association) with equivalent sites around central ion:

Cu2þ
þnX¼ CuXn

2þ
ð3Þ

one can compute Cform by substituting into Eq. (2) the matrix w in
the form:

w¼ 1 6 15o2 20o6 15o12 6o12 o30
� �

ð4Þ

here exponent o is calculated as (n�1)n, n is the number of
coordinated ligands. Eqs. (2)–(4) formally do not take into
account the fact that the complexation in a solution is actually
replacement of the solvent molecules in the first coordination
shell. Nevertheless for the process in a solution, we may assume
that the first and the subsequent ligand’s binding are governed by
the same energetic effect of resolvation plus the change of the
free energy due to mutual ligand’s influence. The equilibrium
constants of the first and the subsequent ligands binding in this
case (when each incoming ligand replaces one molecule of
solvent) are the same, as in the adsorption. Consequently in such
a case the introduction of an additional parameter does not
change the shape of species distribution diagrams, since the
number of linearly independent parameters does not change.
For a mixed solution system the equation of the mixed complex
formation can be written as

CuðSxÞ
2þ
þnX¼ CuðSx�yÞXn

2þ
þyS ð5Þ

To describe solvent displacement in the mathematical model
in Eq. (2) the coefficients o of mutual influence between ligands
should be replaced with the products of coefficients of initially
coordinated solvent influence os and mutual influence between
incoming solvent molecules ol with the exponents corresponding
to the structure of complex. When necessary, to allow for the
energy effect due to a changed number of displaced solvent
molecules a coefficient or should be introduced. A new equation
appears in accordance with the hypothesis about structure and
coordination mode of compounds formed in a stepwise process.
This hypothesis is accepted if the difference between the calcu-
lated and the experimental profiles is less than the established
experimental noise. The successive formation of six coordinated
(for instance, octahedral or distorted octahedral D4h) complexes
obeys Eq. (2) after substitution of w by a new matrix:

w¼ 1 6o5
s 15o8

so2
l 20o9

so6
l 15o8

so12
l 6o5

so20
l o30

l

h i
ð6Þ

here exponent os is calculated as (6�n)n, n is the number
coordinated ligands and exponent ol is calculated as (n�1)n.

For a solvent substitution the concentration matrix Cf ¼

½ ½CuðSxÞ�
2þ ½CuðSx�1ÞX�

2þ � � � ½CuðSx�yÞXN�
2þ
� having a graphi-

cal representation as species distribution diagram, may be used
for finding the binding parameters. Deviations from a regular
change in the species concentrations corresponding to the
additive (association) scheme may be due to a change in the
coordination number (CN) or in the structure of the coordination
sphere during the stepwise process, for instance, as a result of
transition from axially elongated octahedral structure to tetra-
hedral geometry. A huge number of physical experimental meth-
ods allow determining the distribution of the central metal ion
or molecule between the species that coexist in equilibrium. The
experimental data obtained by these methods are suitable to find
the parameters of the matrix model. For the recovery of the
experimental model (row of binding constants lg bn ) which
governs the concentration profiles we have to fit Cf

exp with
matrices of species concentration which were calculated by the
matrix method Cf

calc.
The optimization procedure: The Levenberg–Marquard algo-

rithm of non-linear least square (LS) fitting is used for refinement
of parameters [20,21]. This algorithm has been proven to be
successful in calculations of equilibrium constants from data of
spectrophotometric titrations [22]. Iterative procedure described
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