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a b s t r a c t

The present research is concerned with the time-dependent three-dimensional flow of an incompressible
Maxwell fluid. The induced flow is due to a stretched sheet. Similarity transformations have been
employed for the presentation of the differential systems. The series solutions have been computed by
a homotopy analysis method (HAM). Graphical results are shown in order to predict the features of
the involved key parameters into the problems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of non-Newtonian fluids has gained much atten-
tion because of their obvious industrial and engineering applica-
tions. In fact the foams, emulsions, suspensions, polymers,
certain oils, etc. cannot be described by the Newtons’ law of viscos-
ity and the Navier–Stokes equations are inappropriate for the
description of non-Newtonian fluids. Even the boundary layer
flows in such fluids under two- and three-dimensional flow situa-
tions are very complicated. Thus various recent researchers are en-
gaged in studying different non-Newtonian fluid models under
various flow aspects. For-instance Fetecau et al. [1] presented the
decay of a potential vortex in a generalized Oldroyd-B fluid.
Authors have employed Hankel and Laplace transforms for the
development of the solutions which are presented as the sum of
Newtonian solutions and the adequate non-Newtonian contribu-
tion. Jamil and Fetecau [2] presented some exact solutions for
rotating flows of a generalized Burgers’ fluid in cylindrical do-
mains. The motion in the fluid is induced due to inner cylinder that
applies a time dependent torsional shear to the fluid. Moreover the
corresponding solutions for the Burgers’, Oldroyd-B, Maxwell, sec-
ond grade and Newtonian fluids are presented as the special case.

Stability analysis of a Maxwell fluid in a porous medium heated
from below has been analyzed by Tan and Masuoka [3]. They have
analyzed critical Rayleigh number, wave number and frequency for
the over stability and found that critical Rayleigh number for over
stability decreases as the relaxation time increases whereas poros-
ity acts as an agent to stabilize the system. Hayat et al. [4] pre-
sented the magnetohydrodynamic and axisymmetric flow of
third grade between stretching sheers in the presence of heat
transfer. Authors have utilized similarity transforms for the con-
version nonlinear boundary layer equation to the coupled system
of ordinary differential equations and employed homotopy analy-
sis method for the computations of the solutions. Mass transfer ef-
fects on the unsteady flow of UCM fluid over a stretching sheet has
been presented by Hayat et al. [5]. They have modeled the problem
for the two-dimensional flow and then employed the homotopy
analysis method (HAM) for the construction of the solutions.

The boundary layer flows over a stretching surface are promi-
nent in polymer extrusion, paper production, hot rolling, crystal
growing and continuous stretching of plastic films, fiber produc-
tion, metal extrusion and metal spinning. Sakiadis [6] presented
the seminal work on the boundary layer flow over a stretched
surface. Since then extensive studies have been performed under
various aspects. Literature survey witnesses that majority of the
existing information on stretching flow deals with the mathemat-
ical analysis in the two-dimensions. However, scarce information
is presented for the three-dimensional flow over a stretching
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surface. Ariel [7] found the perturbation and exact solutions for the
three-dimensional steady viscous flow past a stretching sheet. He
concluded that exact solutions might not possible for the three-
dimensional flow of non-Newtonian fluid because of the highly
nonlinear relation between stress and deformation rate. Thus re-
searcher should go for the analytic solutions which sufficient
amount of accuracy. Mehmood and Ali [8] studied generalized
three-dimensional channel flow due to uniform stretching of the
plate. Uniform stretching phenomenon has been utilized for the
generation of the three-dimensional flow and homotopy analysis
method has been utilized for the solution construction. Xu et al.
[9] presented the series solutions of unsteady three-dimensional
MHD viscous flow and heat transfer in the boundary layer over
an impulsively stretching plate. Three-dimensional flow in the
Maxwell fluid over a stretching surface has been discussed by
Hayat and Awais [10]. They have modeled the three-dimensional
momentum equation for the steady flow of Maxwell fluid. A com-
parison with the previous published results is also shown. Analytic
solution for the MHD rotating flow of Jeffery fluid in a channel has
been found by Hayat et al. [11]. Authors have concluded that oscil-
lations effects can be generated by incorporating the rotation into
the momentum equations. Eldabe et al. [12] presented the three-
dimensional flow over a stretching surface in a viscoelastic fluid
with mass and heat transfer. As per our knowledge no investiga-
tion has been made yet for the time-dependent three-dimensional
flow of Maxwell fluid over a bidirectionally stretching surface. In
view of this fact the present work has been undertaken. This paper
is arranged as follows. Section 2 contains the formulation. Section 3
deals with the series solution by using the homotopy analysis
method (HAM) [13–20] and the convergence of the problem is pre-
sented in Section 4. Section 5 syntheses the obtained results. Con-
cluding remarks have been reported in Section 6.

2. Formulation of the problem

Consider the time-dependent three-dimensional flow of an
incompressible upper convected Maxwell (UCM) fluid bounded
by a stretching sheet. The sheet coincides with the plane at z = 0
and the flow occupies the region z > 0. The motion in fluid is caused
by a non-conducting stretching surface as shown in Fig. 1.

The flow is governed by the continuity and momentum equa-
tions in the forms

r � V ¼ 0; ð1Þ
qa ¼ r � T; ð2Þ

in which V denotes the velocity vector and T is the Cauchy stress
tensor. The acceleration vector a is defined as

a ¼ dV
dt
¼ @V
@t
þ ðV � $ÞV: ð3Þ

The Cauchy stress tensor in Maxwell fluid is given by

T ¼ �pIþ S; ð4Þ

In which an extra stress tensor S has the relation

1þ k
D
Dt

� �
S ¼ lA1; ð5Þ

where k indicates the relaxation time, l is the dynamic viscosity
and the first Rivlin–Ericksen tensor A1 can be expressed as

A1 ¼ L þ LT ; L ¼ $V; ð6Þ

and for a two rank tensor S we have

DS
Dt
¼ @S
@t
þ ðV � $ÞS� LS� SLT ; ð7Þ

From Eqs. (2) and (4) we have

qa ¼ �rpþr � S: ð8Þ

Here q is the fluid density and p is the pressure. Our interest now is
to eliminate S between Eqs. (5) and (8). Hence applying (1 + kD/Dt)
onto Eq. (8), one obtains

q 1þ k
D
Dt

� �
a ¼ � 1þ k

D
Dt

� �
rpþ 1þ k

D
Dt

� �
ðr � SÞ; ð9Þ

Following Harris [21], we use

D
Dt
ðr�Þ ¼ r � D

Dt

� �
ð10Þ

and Eq. (9) thus yields

q 1þ k
D
Dt

� �
a ¼ � 1þ k

D
Dt

� �
rpþr � 1þ k

D
Dt

� �
S;

¼ � 1þ k
D
Dt

� �
rpþ lr � A1;

ð11Þ

For a three-dimensional flow with velocity V = [u(x, y, z, t), v(x,
y, z, t), w(x, y, z, t)], we have in the absence of pressure gradient
the following equations in component form
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Fig. 1. Geometry of the problem.
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