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a b s t r a c t

In this paper a Moving Least Squares method (MLS) for the simulation of 2D free surface flows is
presented. The emphasis is on the governing equations, the boundary conditions, and the numerical
implementation. The compressible viscous isothermal Navier–Stokes equations are taken as the starting
point. Then a boundary condition for pressure (or density) is developed. This condition is applicable at
interfaces between different media such as fluid–solid or fluid–void. The effect of surface tension is
included. The equations are discretized by a moving least squares method for the spatial derivatives
and a Runge–Kutta method for the time derivatives. The computational frame is Lagrangian, which
means that the computational nodes are convected with the flow. The method proposed here is
benchmarked using the standard lid driven cavity problem, a rotating free surface problem, and the
simulation of drop oscillations. A new exact solution to the unsteady incompressible Navier–Stokes
equations is introduced for the rotating free surface problem.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling flows with a free surface is a non-trivial task because
the fluid domain changes during the simulation. In the VOF
method [1] the liquid and the gas phase is modelled on a fixed grid
of nodes (Eulerian approach). This means that the fluid–gas
interface is captured in an average sense by some of the grid cells.
In the Level-Set Method [2] the boundary is given implicitly as a
level curve of a scalar field defined over the entire solution domain.
This is also a Eulerian approach with approximate representation
of the free surface. Another class of methods exists in which
Lagrangian coordinates are used. One example is the SPH method
[3] in which particles interact with each other in a pair-wise fash-
ion and convect with the flow.

The method proposed here is based on the Reproducing Kernel
Method [4] which is a kind of gridless finite difference method. It is
also a Lagrangian approach and allows for explicit tracking of the
free surface using special surface nodes. A downside is the non-
uniform distribution of the nodes as the simulation progresses.
Therefore, redistribution of the computational nodes is necessary
at certain intervals. The basis functions used for the spatial
derivatives can also be used for the interpolation of the current
field values onto the new node set. MLS is basically a centered
scheme, which has a drawback regarding decoupling modes.

However, the redistribution of nodes has a smoothening effect,
which in many cases helps to keep the unwanted modes under
control.

The main benefits of the proposed method are:

(i) In a two-phase flow problem where one phase can be con-
sidered void (with a hydrostatic pressure) the computational
domain needs only include the other phase. In such cases the
simulation problem becomes smaller than e.g. VOF and
Level-Set Method simulations.

(ii) No global system of equations needs to be solved.
(iii) The method can handle large deformations without the need

to redefine a computational mesh.

2. Governing equations

The Navier–Stokes equations express the rate of change of
momentum for a fluid particle. Using tensor notation and Cartesian
coordinates they may be stated as [5]

dv i

dt
¼ 1

q
@rij

@xj
ð1Þ

where dð�Þ=dt denotes the material derivative with respect to time,
and

rij ¼ �pdij þ sij ð2Þ

is the stress tensor. The symbol dij is the Kronecker delta, and the
shear stress sij is given by
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sij ¼ leij ð3Þ

where l is the dynamic viscosity, and eij is the deformation rate
tensor

eij ¼
@v j

@xi
þ @v i

@xj
� 2

3
@vk

@xk
dij ð4Þ

For a 2D problem equations Eqs. (1)–(4) give the Navier–Stokes
equations for a compressible fluid with constant viscosity
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In Eqs. (1) and (5) the left hand side of the momentum equations is
written using the material derivative. This notation indicates that
Lagrangian coordinates are used. Lagrangian coordinates are associ-
ated with points that follow the deformation of the media which is
expressed by the following equations

dx
dt
¼ u

dy
dt
¼ v ð6Þ

The continuity equation expresses the conservation of mass, and
may be written in Lagrangian form as [5]

dq
dt
¼ �q
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þ @v
@y

� �
ð7Þ

The present model assumes isothermal flow and the system is
closed using the ideal gas law
p ¼ C0q ð8Þ

where C0 is a constant. The speed of sound a relates to the pressure–
density function in the following way

a2 ¼ @p
@q
¼ C0 ð9Þ

Thus the speed of sound is controlled directly by the gas constant.

3. Boundary conditions

For the problems considered two types of boundary conditions
are needed, namely a solid wall and a free surface.

3.1. Solid wall

On solid bodies the no-slip condition is used. The physical
meaning is that there can be no relative velocity between particles
on the solid and fluid particles touching the solid. Therefore, the
velocity field of the fluid must equal the velocity on the solid at
the solid/fluid interface

ufluid ¼ uwall v fluid ¼ vwall ð10Þ

In order to evaluate stresses and forces on solid walls the pressure
on the solid boundary is needed (see Eq. (2)).

A boundary condition for pressure (or equivalently density) is
derived from the momentum equations Eq. (5) and the normal vec-
tor on the solid n ¼ ðnx nyÞT . Taking the scalar product between
these vectors gives
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Using the notation @p=@n ¼ nx@p=@xþ ny@p=@y Eq. (11) may be
rearranged in the following way
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which constitutes a Neumann boundary condition for pressure p.
The partial derivatives of pressure in the left hand side of Eq.

(12) can be replaced by expressions obtained from the equation
of state Eq. (12)
@p
@x
¼ C0

@q
@x

@p
@y
¼ C0

@q
@y

ð13Þ

With this substitution Eq. (12) becomes a single inhomogeneous
Neumann condition for the single unknown q.

3.2. Free surface

The condition which must be satisfied at a free surface is the
balance of normal and shear stresses. A free surface is sketched
in Fig. 1. The traction at the fluid side of the free surface interface
is composed of two terms. One term stems from the stress tensor
associated with the fluid, the other term is due to surface tension.
Surface tension gives rise to a jump in normal stress f, which is pro-
portional to the curvature j of the free surface

f ¼ jr ¼ x0y00 � y0x00

ððx0Þ2 þ ðy0Þ2Þ
3=2 r ð14Þ

where r is the surface tension and x and y describes the free surface
expressed in terms of the arc length parameter s.

A boundary condition for the free surface is obtained by requir-
ing a balance of the normal and shear stress at either side of the
interface

rA
ij ninj þ jr ¼ rB

ijninj

rA
ij nitj ¼ rB

ijnitj

ð15Þ

where

rij is the stress tensor
ni is the normal vector
ti is the tangent vector
A;B denote media A and media B; respectively

Let medium A be a compressible fluid; the stress tensor then be-
comes (from Eq. (12)

rA
ij ¼ �pdij þ l @v j
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Fig. 1. Sketch of a free surface. Computational nodes carry velocity components
u; v , and density q and are shown as dots. The surrounding media is considered
void with a constant pressure pamb.

48 C.L. Felter et al. / Computers & Fluids 91 (2014) 47–56



Download English Version:

https://daneshyari.com/en/article/768554

Download Persian Version:

https://daneshyari.com/article/768554

Daneshyari.com

https://daneshyari.com/en/article/768554
https://daneshyari.com/article/768554
https://daneshyari.com

