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a b s t r a c t

By using all speed numerical flux schemes, such as SLAU [Simple Low Dissipation AUSM (Advection
Upstream Splitting Method)], in MUSCL (Monotone Upwind Scheme for Conservation Laws) approach
for compressible CFD, low Mach number flows can be computed without loss of accuracy nor parameter
tuning. For an efficient computation, this paper deals with new approaches of implicit time integration
method. In this approach, the large sparse matrix system, which consists of flux Jacobian of numerical
flux function, has to be solved in each time step. Firstly, a simple Gauss–Seidel iteration method named
TC-PGS1(Time Consistent Preconditioned Gauss–Seidel 1) which has flavor of the time derivative precon-
ditioning is introduced. Secondary, we tried to use FGMRES (k) (Flexible Generalized Minimum Residual
Method) to solve the non-diagonal dominant linear system arising from Jacobian of flux function SLAU.
TC-PGS1 is also used as the matrix preconditioner for FGMRES (k). Optimal parameters for FGMRES (k) is
investigated numerically and the performances on computational efficiency of the new methods are com-
pared. It is indicated that FGMRES (k) has apparent advantage on computation of low Mach number flows
with sound propagation, however, simpler TC-PGS1 has comparable performance if only flow fields are of
interest.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

When compressible CFD methods are applied to low Mach
number flows, cares must be taken to excessive numerical dissipa-
tion and stiffness due to the large condition number, which is the
ratio of maximum and minimum characteristic speeds. Round off
error due to very small changes of scalar variables may be another
problem, but this can be rather easily avoided by separately storing
variables of their reference and variation values as p = p1 + p0.

The authors proposed all speed numerical flux schemes of
AUSM (Advection Upstream Splitting Method) family named SLAU
[1] (Simple Low-dissipation AUSM) and showed this scheme can
compute from very low to very high Mach number without tuning
of parameters, such as the cutoff Mach number. It was also shown
that the combination with Weiss–Smith [2] time derivative pre-
conditioning is effective and the stiffness can be avoided at least
for steady state flows.

SLAU is a compressible flow CFD algorithm that can compute
very low Mach number flows, thus, it can be a good candidate
for the direct solver of aero-acoustic problems in the low speed
flow, i.e., for solving flow and sound at the same time.

Incompressible flow is thought as low Mach number limit. In
incompressible CFD methods pressure wave is neglected, thus
acoustics must be treated separately from flow dynamics. If poten-

tial methods are used for acoustics, for example, effects of non-uni-
form velocity field cannot be included easily. As another option,
the effect of flow can be reflected by the use of LEE (linearized Eu-
ler equation), but still it is difficult when the average flow is hard to
be set up. And also the computational cost for LEE is roughly the
same as for Euler or laminar Navier–Stokes equation, so the benefit
of LEE is not so significant. These are the reasons why we chose the
direct solver approach here.

By using explicit time integration, it has been proven in previ-
ous research that sound propagation can be computed. However,
the usage of explicit schemes is impractical for low Mach number
flows since time step determined by sound speed is too restrictive
for convection.

A lager time step can be used with implicit time integration. In
an implicit method, a large sparse matrix system, which consists of
flux Jacobian of numerical flux function, has to be solved in each
time step. In our previous work, we introduced Time-Consistent
Preconditioned Gauss–Seidel (TC-PGS) [4], a version of precondi-
tioned Gauss–Seidel (GS)1 implicit time integrations using entropy
variables, and demonstrated its accuracy and efficiency over a con-
ventional GS method in solving flow dynamics and aero-acoustics
both in low speed flows. The relations between Gauss–Seidel type
implicit schemes are illustrated in the upper part of Fig. 1. LU-SGS
and MFGS (Matrix Free Gauss–Seidel) in the figure are non precondi-
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tioned schemes suited for higher Mach number flows. The time
derivative preconditioning method of Weiss–Smith can be applied
to these methods and the preconditioned versions be formulated.
TC-PGS is formulated by rearranging the implicit numerical dissipa-
tion of the preconditioned schemes. See section 5.2 for the detail.

Through the derivation of TC-PGS, we realized that the essential
point of the preconditioned implicit algorithm is to design the im-
plicit numerical dissipation which is matched to the R.H.S with
keeping the positive definiteness of the numerical flux Jacobian,
which is a necessary and sufficient condition of the diagonal dom-
inance of the linear system. In this study, SLAU is applied as the
R.H.S. numerical flux function, thus the apparent choice is to use
the implicit dissipation close to that of SLAU. However, the linear
system for approximate Jacobian of SLAU turned out to be non-
diagonal dominant, as will be explained later in this paper. Tradi-
tional iterative linear solvers such as a Gauss–Seidel method are
unstable without the diagonal dominance.

Since only an approximate linear solution is required for this
purpose, one choice is nevertheless to use diagonal dominant
approximation on linear system. This leads to a simpler method
named TC-PGS1, which has less dependence on a user-specified
parameter, and this will be introduced in this paper first. Then,
as another approach, we will solve the non-diagonal dominant sys-
tem directly by a more sophisticated method, which is shown in
the lower part of Fig. 1. In this study, FGMRES (k) by Saad [3] is em-
ployed in which we can use different matrix preconditioners at
each GMRES step: The SGS matrix borrowed from TC-PGS1 is used
as a matrix preconditioner, along with different numbers of itera-
tions at each step.

2. Governing equation and basic numerical scheme

Compressible Navier–Stokes equation is written in integral
form as;ZZZ

Q tdv þtðbE � bRÞds ¼ 0 ð2:1Þ

By using polyhedrons (polygons in two dimensions) as control vol-
umes, the basic equation for FVM (Finite Volume Method) is written
as;
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Here subscript i, j means ‘j’th face of the cell ‘i’, n and n + 1 are phys-
ical time steps. Our expression here is based on an unstructured
grid formulation, but structured grids can be treated as only a spe-
cial case.

For unsteady computations, the dual time stepping and 3-point
backward Euler scheme are introduced;
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Here, k and k + 1 denote pseudo time steps. For the second order
temporal accuracy with time step variation, coefficients hk are given
by;

ðh1; h2Þ ¼ ððr þ 2Þ=ðr þ 1Þ; ðr þ 1Þ=rÞ
Dtn�1 ¼ rDtn

ð2:5Þ

where r = 1 in this study as usual; for the first order method, they
are given by;

ðh1; h2Þ ¼ ð1;1Þ ð2:6Þ

The pseudo time s can be chosen independently from physical time
t, and correct time evolution is recovered for any choice of s when
the equation is converged about s. If non-factored implicit schemes,
such as Gauss–Seidel iteration or FGMRES in this paper, are used,
faster convergence is obtained by bigger Ds. Thus we took Ds to
be infinitely large, and then, obtained the following equation;
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3. Implicit time integration algorithm in delta form

Using first order upwind difference and approximate lineariza-
tion for L.H.S., implicit time integration scheme of Eq. (2.7) is writ-
ten as;
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Nomenclature

c sound speed
e total energy per unit volumebE; bR inviscid and viscous flux outward normal to faceeE; eR numerical inviscid and viscous flux outward normal to

cell-interface
h total enthalpy
L reference length scale
l wave length
M Mach number
M transforming matrix from conservative to entropy vari-

able
p pressure
P preconditioning matrix for linear system
Q vector of conservative variables (q,qu,qv,qw,e)T

Re Reynolds number
s area of cell-interface
S vector of stored field variable

T period of wave
t physical time
u, v, w Cartesian velocity components
Vn velocity component normal to cell-interface
V volume of cell
W vector of working variables
xn, yn, zn outward normal of cell-interface
x, y, z Cartesian coordinates
s pseudo time
q density
l molecular viscosity
lT turbulent viscosity
r spectral radius

Subscript
1 freestream value
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