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a b s t r a c t

This article addresses the use of the level-set method for capturing the interface between two fluids. One
of the advantages of the level-set method is that the curvature and the normal vector of the interface can
be readily calculated from the level-set function. However, in cases where the level-set method is used to
capture topological changes, the standard discretization techniques for the curvature and the normal vec-
tor do not work properly. This is because they are affected by the discontinuities of the signed-distance
function half-way between two interfaces. This article addresses the calculation of normal vectors and
curvatures with the level-set method for such cases. It presents a discretization scheme based on the
geometry-aware curvature discretization by Macklin and Lowengrub [1]. As the present scheme is inde-
pendent of the ghost-fluid method, it becomes more generally applicable, and it can be implemented into
an existing level-set code more easily than Macklin and Lowengrub’s scheme [1]. The present scheme is
compared with the second-order central-difference scheme and with Macklin and Lowengrub’s scheme
[1], first for a case with no flow, then for a case where two drops collide in a 2D shear flow, and finally for
a case where two drops collide in an axisymmetric flow. In the latter two cases, the Navier–Stokes equa-
tions for incompressible two-phase flow are solved. The article also gives a comparison of the calculation
of normal vectors with the direction difference scheme presented by Macklin and Lowengrub in [2] and
with the present discretization scheme. The results show that the present discretization scheme yields
more robust calculations of the curvature than the second-order central difference scheme in areas where
topological changes are imminent. The present scheme compares well to Macklin and Lowengrub’s
method [1]. The results also demonstrate that the direction difference scheme [2] is not always sufficient
to accurately calculate the normal vectors.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The level-set method was introduced by Osher and Sethian [3].
It is designed to implicitly track moving interfaces through an iso-
contour of a function defined in the entire domain. In particular, it
is designed for problems in multiple spatial dimensions in which
the topology of the evolving interface changes during the course
of events, cf. [4].

This article addresses the calculation of interface geometries
with the level-set method. This method allows us to calculate the
normal vector and the curvature of an interface directly as the first
and second derivatives of the level-set function. These calculations
are typically done with standard finite-difference methods. Since
the level-set function is chosen to be a signed-distance function,
in most cases it will have areas where it is not smooth. Consider

for instance two colliding drops where the interfaces are captured
with the level-set method, see Fig. 1. The derivative of the level-set
function will not be defined at the points outside the drops that
have an equal distance to both drops. When the drops are in near
contact, this discontinuity in the derivative will lead to significant
errors when calculating the interface geometries with standard fi-
nite-difference methods. For convenience the areas where the
derivative of the level-set function is not defined will hereafter
be referred to as kinks.

To the authors knowledge, this issue was first described in [2],
where the level-set method was used to model tumour growth.
Here Macklin and Lowengrub presented a direction difference to
treat the discretization across kinks for the normal vector and
the curvature. They later presented an improved method where
curve fitting was used to calculate the curvatures [1]. This was fur-
ther expanded to include the normal vectors [5].

An alternative method to avoid the kinks is presented in [6],
where a level-set extraction technique is presented. This technique
uses an extraction algorithm to reconstruct separate level-set
functions for each distinct body.
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Accurate calculation of the curvature is important in many
applications, in particular in curvature-driven flows. There are sev-
eral examples in the literature of methods that improve the accu-
racy of the curvature calculations, but that do not consider the
problem with the discretization across the kinks. The authors in
[7] use a coupled level-set and volume-of-fluid method based on
a fixed Eulerian grid, and they use a height function to calculate
the curvatures. In [8] a refined level-set grid method is used to
study two-phase flows on structured and unstructured grids for
the flow solver. An interface-projected curvature-evaluation meth-
od is presented to achieve converging calculation of the curvature.
Marchandise et al. [9] adopt a discontinuous Galerkin method and
a pressure-stabilized finite-element method to solve the level-set
equation and the Navier–Stokes equations, respectively. They de-
velop a least-squares approach to calculate the normal vector
and the curvature accurately, as opposed to using a direct deriva-
tion of the level-set function. This method is used by Desjardins
et al. [10], where they show impressive results for simulations of
turbulent atomization.

This article is a continuation of the work presented in [11]. It
applies the level-set method and the ghost-fluid method to incom-
pressible two-phase flow in two dimensions. A curve-fitting dis-
cretization scheme is presented which is based on the geometry-
aware discretization given in [1]. This scheme is mainly applied
to the curvature discretization. The normal vectors are calculated
both with the direction difference described in [2] and with a com-
bination of the direction difference and the curve-fitting discretiza-
tion scheme.

The main advantage of the present scheme compared to the
geometry-aware discretization [1] is that it is independent of the
ghost-fluid method. That is, in [1] Macklin and Lowengrub calcu-
late the curvature values directly on the interface when it is
needed by the ghost-fluid method, whereas we compute the curva-
ture values at the global grid points, indendent of the ghost-fluid
method. Because of this, the scheme can be implemented more
easily into existing Navier–Stokes codes employing the level-set
method, since only small parts of the existing codes need modifica-
tion. It is also more generally applicable, for instance it can be used
with the continuum surface-force method [15]. Further, it allows
for more accurate curvature values in models that require curva-
ture values on the grid instead of on the interface, e.g. surfactant
models [12–14].

The article starts by briefly describing the governing equations
for two-phase flow and the level-set method in Section 2. It contin-
ues in Section 3 with a description of the numerical methods that
are used for their solution. Then the discretization schemes for the
normal vector and the curvature are presented in Section 4, fol-
lowed by a detailed description of the method for curvature dis-
cretization in Section 5. Section 6 gives a convergence test and a
comparison of the present discretization scheme with the sec-
ond-order central difference scheme and Macklin and Lowengrub’s
scheme [1], first on static interfaces in near contact, then on two
drops colliding in a 2D shear flow, and finally on a case where

two drops collide in an axisymmetric flow. The section is con-
cluded with a comparison of the direction difference scheme [2]
with a combination of the direction difference and the curve-fitting
discretization schemes for calculating normal vectors. Finally in
Section 7 concluding remarks are made.

2. Governing equations

2.1. Navier–Stokes equations for two-phase flow

Consider a two-phase domain X ¼ Xþ [ X�, where Xþ and X�

denote the regions occupied by the respective phases. The domain
is divided by an interface C ¼ dXþ \ dX� as illustrated in Fig. 2. The
governing equations for incompressible and immiscible two-phase
flow in the domain X with an interface force on the interface C can
be stated as

r � u ¼ 0; ð1Þ

q
@u
@t
þ u � ru

� �
¼ �rpþr � ðlðruþ ðruÞTÞÞ þ qfb

þ
Z

C
rjndðx� xIðsÞÞds; ð2Þ

where u is the velocity vector, p is the pressure, fb is the specific
body force, r is the coefficient of surface tension, j is the curvature,
n is the normal vector which points to Xþ, d is the Dirac Delta func-
tion, xI is a parametrization of the interface, q is the density and l is
the viscosity. These equations are often called the Navier–Stokes
equations for incompressible two-phase flow.

It is assumed that the density and the viscosity are constant in
each phase, but they may be discontinuous across the interface.
The interface force and the discontinuities in the density and the
viscosity lead to a set of interface conditions,

½u� ¼ 0; ð3Þ
½p� ¼ 2½l�n � ru � nþ rj; ð4Þ

½lru� ¼ ½l� ðn � ru � nÞn� nþ ðn � ru � tÞn� tð
�ðn � ru � tÞt � nþ ðt � ru � tÞt � tÞ; ð5Þ

½rp� ¼ 0; ð6Þ

where t is the tangent vector along the interface, � denotes the dya-
dic product and ½�� denotes the jump across an interface, that is

½l� � lþ � l�: ð7Þ

See [16,17] for more details and a derivation of the interface
conditions.

2.2. Level-set method

The interface is captured with the zero level set of the level-set
function uðx; tÞ, which is prescribed as a signed-distance function.
That is, the interface is given by

Fig. 1. (a) Two drops in near contact. The dotted line marks a region where the
derivative of the level-set function is not defined. (b) A one-dimensional slice of the
level-set function uðxÞ. The dots mark points where the derivative of uðxÞ is not
defined.

Fig. 2. Illustration of a two-phase domain: The interface C separates the two
phases, one in Xþ and the other in X� .
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