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a b s t r a c t

A technique to handle contact points in a sharp interface method based on the level set method is pre-
sented. The contact points are tracked explicitly. The coupling between the contact points and the zero
level set is enforced by boundary conditions during reinitialisation of the distance function. For sharp
interface methods an accurate approximation of the curvature is important. However, this cannot be
obtained by using the conventional central difference methods adjacent to walls since the level set func-
tions are not defined therein. Therefore we propose to use the tracked contact point and the intersection
points of the first two grid lines parallel to the wall with the zero contour line of the signed distance func-
tion to approximate the contact angle and curvature adjacent to the walls. The method is verified using a
capillary rise and a gravity driven two phase channel flow.

� 2013 Published by Elsevier Ltd.

1. Introduction

Multi phase flows with moving contact lines can be found in
many industrial and natural processes. Applications where the
dynamics around the contact line plays an important role include
microfluidics, coating processes, ink-jet printing or simple rain-
drops on the windscreen of a car.

Moving contact lines are a challenging problem to model. If the
conventional no-slip boundary condition is applied to the Navier–
Stokes equations, the stresses are diverging at the line where the
three phases meet. In fact, molecular dynamics (MD) simulations
show a nearly complete slip in the region of the contact line [1].
Over the years the moving contact line has been an topic of re-
search and a lot of different theories have been developed to de-
scribe its dynamics [2,3].

Methods to model multi phase flows on fixed grids can be di-
vided into two groups depending on the interface thickness. The
first group assumes that the interface between the fluids is much
smaller than any resolved length scale. Typically the interface is
advected with the local fluid velocity and a number of different
techniques exist to keep track of the interface position. These in-
clude the level set method [4] the volume of fluid method [5]
and interface tracking methods [6]. On the other hand phase field
methods solve the coupled Cahn–Hilliard/Navier–Stokes equa-
tions. The Cahn–Hilliard equation is based on the free energy of
an interface [7] and therefore the interface extends over a finite re-
gion. The phase field methods allow for contact line movement

through diffusive interfacial fluxes across the interface, even if a
no-slip boundary condition is applied, which is not the case for
methods which do not resolve the interface. The advantage of
methods not resolving the interface is, that they typically require
less resolution since the diffuse interface does not need to be re-
solved by a certain number of grid points.

An additional challenge for the first group has been that con-
ventional discretisations can neither handle fluid properties which
change instantly at the interface nor the singular surface tension
force. The majority of methods for the modelling of multi phase
flows including contact lines [8–11] smear out the jumps of the
fluid properties over several grid points and the surface tension
is implemented using the continuous surface force [12] or a similar
method where the singular force is distributed over several grid
points adjacent to the interface. The ghost-fluid method (GFM)
[13] was extended to incompressible two phase flows [14] and it
modifies the discretisation stencils to allow sharp jumps of the
fluid properties at the interface as well as a sharp implementation
of the surface tension force through a jump in the pressure.

The aim of the present study is to present a technique, which
allows to handle contact lines in the context of a sharp interface
method using the GFM. Moreover the method should be general
in a way that it gives control over the contact point position. This
is opposed to the more common approach manioulating the con-
tact angle [8,9,18]. The presented method is a refinement of the
technique presented in [15] and was used to implement a multi
scale method for capillary driven multi phase flows [16,26]. The
current paper focuses on the details of the numerical implementa-
tion of the contact point tracking and it is organised as follows. In
Chapter 2 the governing equations for incompressible tow phase
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flow are introduced. The discretisation of the equations by the GFM
and the implementation of the contact point tracking are described
in Chapter 3. In chapter 4 the method is assessed for capillary rise
and a moving contact point in a channel. Conclusions are stated in
Chapter 5.

2. Equations

2.1. Navier–Stokes equations

We consider incompressible flow of two immiscible viscous flu-
ids. In this study we confine ourselves to two-dimensional prob-
lems. The continuity and momentum equations, i.e., the Navier–
Stokes equations for a Newtonian fluid for incompressible flow:

r � u ¼ 0 ð1Þ

q
@u
@t
þ ðu � rÞu

� �
¼ �rpþ lr2uþ qg ð2Þ

where u is the velocity vector, p is the pressure, g is the gravity vec-
tor, l and q are the dynamic viscosity and the density, respectively.
The material properties l and q can be different in each fluid and
we use a + and � sign to discriminate between the two fluids. These
equations have to be fulfilled in both fluids in two phase flow.

2.2. Interface conditions

The boundary conditions at the interface can be derived by con-
sidering an infinitesimal control volume across the interface. This
volume can be divided into a control volume for each fluid. The
conservation laws for mass and momentum hold for the entire vol-
ume as well as for each of the partial volumes. Subtracting the sum
of the conservation laws applied to the two partial volumes indi-
vidually from the conservation laws applied to the entire volume,
we get the boundary conditions at the interface. For the case with
constant surface tension r and no mass transfer across the inter-
face the following jump conditions are obtained:

½u� ¼ 0 ð3Þ

nT

tT

� �
pI� sð Þn

� �
¼

rj
0

� �
ð4Þ

where square brackets define the jump across the interface, e.g.
[u] = u+ � u�. We further denote n and t as unit normal and tangent
vectors to the interface. j is the local interface curvature and s is
the viscous stress tensor. These conditions imply that the velocity
and tangential stresses are continuous across the interface, whereas
the pressure and the normal stresses are discontinuous.

2.3. Level set method

In order to apply the interface conditions presented in the previ-
ous section it is necessary to know its position. A popular method to
keep track of the interface position in two phase flows is the level
set method (LSM) [4], in which the interface is defined as the zero
contour line of a scalar function /. Typically / is the signed distance
function from the interface. It exists and is continuous in the entire
computation domain. The signed distance function is advected with
the local fluid velocity using the advection equation

@/
@t
þ u � r/ ¼ 0 ð5Þ

Since all discretisations of the advection equation will not be exact,
/ looses its signed distance property over time and has to be reini-
tialised solving the following equation to steady state

@/
@s
þ signð/Þðjr/j � 1Þ ¼ 0 ð6Þ

The interface normal and curvature can be obtained directly
from the signed distance function.

n ¼ r/
jr/j ð7Þ

j ¼ �r � n ð8Þ

2.4. Contact point

Around a point where the interface between two fluids meets a
solid surface, the conventional no-slip boundary condition cannot
be applied. For otherwise the stresses around the interface would
become singular. To avoid this singularity the no-slip boundary
condition is often replaced by a slip boundary condition of the fol-
lowing form:

uk ¼ k
@uk
@x?

����
wall

ð9Þ

where k is the slip length and k and \ denote the parallel and nor-
mal directions relative to the wall. The difference in the surface
energies can lead to a motion of the contact point. For small capil-
lary numbers this effect can become extremely important. How-
ever, it is not possible to describe the dynamics around the
contact point accurately using the Navier–Stokes equations. Some
authors choose to fix the contact angle to model the dynamics
around the contact line [17,9,18]. In the present paper we shall
set the contact point velocity uCP as a function of the contact angle.
To achieve this goal Spelt [10] proposed to track the contact point
explicitly. Thus, the position of the contact point is described by
an ordinary differential equation

dxCP

dt
¼ uCP ¼ f ðhCPÞ ð10Þ

where f(hCP) is a function describing the dependency of the contact
point velocity on the contact angle. The choice of f is important and
should be done carefully to obtain reliable results. Different ap-
proaches to model the dependency of the contact point velocity
on the contact angle are possible, including the use of empirical
data or results from microscale simulations around the interface.
The method presented here is not restricted to contact point veloc-
ities which are a function of the contact angle. In principle f(h) can
be replaced by any relation.

3. Discretisation

The discretisation is done on a uniform staggered grid, where
the scalar quantities, i.e., pressure p and signed distance function
/, are stored at the cell centres while the velocity components u
and v are stored at the vertical and horizontal cell faces, respec-
tively [19]. The classical marker and cell (MAC) method is used
to couple velocity and pressure in the discretisation of the incom-
pressible Navier–Stokes Eqs. (1) and (2).

3.1. Navier–Stokes

The advection terms in the Navier–Stokes Eq. (2) are discretised
by a 5th order Hamilton–Jacobi WENO scheme [13]. For the WENO
scheme can handle the discontinuities in the first derivative of the
velocity automatically. In points which are not adjacent to the
interface the viscous terms are discretised by second order central
difference stencils, i.e.,
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