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a b s t r a c t

Numerical schemes used for the integration of complex flow simulations should provide accurate solu-
tions for the long time integrations these flows require. To this end, the performance of various high-
order accurate numerical schemes is investigated for direct numerical simulations (DNS) of homoge-
neous isotropic two-dimensional decaying turbulent flows. The numerical accuracy of compact differ-
ence, explicit central difference, Arakawa, and dispersion-relation-preserving schemes are analyzed and
compared with the Fourier–Galerkin pseudospectral scheme. In addition, several explicit Runge–Kutta
schemes for time integration are investigated. We demonstrate that the centered schemes suffer from
spurious Nyquist signals that are generated almost instantaneously and propagate into much of the
field when the numerical resolution is insufficient. We further show that the order of the scheme
becomes increasingly important for increasing cell Reynolds number. Surprisingly, the sixth-order
schemes are found to be in perfect agreement with the pseudospectral method. Considerable reduction
in computational time compared to the pseudospectral method is also reported in favor of the finite
difference schemes. Among the fourth-order schemes, the compact scheme provides better accuracy
than the others for fully resolved computations. The fourth-order Arakawa scheme provides more accu-
rate results for under-resolved computations, however, due to its conservation properties. Our results
show that, contrary to conventional wisdom, difference methods demonstrate superior performance in
terms of accuracy and efficiency for fully resolved DNS computations of the complex flows considered
here. For under-resolved simulations, however, the choice of difference method should be made with
care.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The physics of two-dimensional turbulence have been eluci-
dated substantially during the past decades by theoretical models,
intensive numerical investigations, and dedicated soap film exper-
iments [1]. Two-dimensional turbulence research efforts have
applicability in geophysics, astronomy and plasma physics, in
which numerical experiments play a large role. One of the most
important reasons for studying two-dimensional turbulence is to
improve our understanding of geophysical flows in the atmosphere
and ocean [2–8]. We may also find two-dimensional flows in a
wide variety of situations such as flows in rapidly rotating systems
and flows in a fluid film on top of the surface of another fluid or a
rigid object [9].

Two-dimensional turbulence behaves in a profoundly different
way from three-dimensional turbulence due to different energy
cascade behavior, and follows the Kraichnan–Batchelor–Leith
(KBL) theory [10–12]. In three-dimensional turbulence, energy is

transferred forward, from large scales to smaller scales, via vortex
stretching. In two dimensions that mechanism is absent, and it
turns out that under most forcing and dissipation conditions energy
will be transferred from smaller scales to larger scales. This is
largely because of another quadratic invariant, the potential
enstrophy, defined as the integral of the square of the potential
vorticity. Despite the apparent simplicity in dealing with two rather
than three spatial dimensions, two-dimensional turbulence is
possibly richer in its dynamics than three-dimensional turbulence
due to its conservation properties, such as its inverse energy and
forward enstrophy cascading mechanisms. Danilov and Gurarie
[13] and Tabeling [14] reviewed both theoretical and experimental
two-dimensional turbulence studies along with extensions into
geophysical flow settings. More recent reviews on two-dimensional
turbulence are also provided by Clercx and van Heijst [15] and
Boffetta and Ecke [16]. Recent studies in two-dimensional turbu-
lence, both forced (stationary) turbulence [17–20] and unforced
(decaying) turbulence [21–23] provide high resolution computa-
tional confirmation of the KBL theory.

Simulation of turbulent and other convection-dominated
unsteady flows using direct numerical simulation (DNS) requires a
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numerical method that properly resolves all the multiscale flow
structures [24]. Since high accuracy is crucial in numerical
simulation of complex flows with multiscale structures, such as
the unsteady evolution of a turbulent flow field, most two-dimen-
sional turbulence studies have been performed using pseudospec-
tral methods based on fast Fourier transform (FFT) algorithms
[21,16]. Simulations performed by the lattice Boltzmann method
(LBM) have been also presented for two-dimensional decaying
turbulence [25]. Pseudospectral methods are highly accurate but
mostly limited to ideal geometries such as rectangular or circular
domains. Discretization methods such as finite difference, finite ele-
ment, or finite volume methods are often preferred in more realistic
problems. Finite difference methods offer an attractive alternative to
spectral methods in the direct and large eddy simulations (LES) of
turbulence providing reasonable accuracy coupled with relative
ease of implementation in simple and complex flow geometries
[26–29]. Computational algorithms developed in the past were
mainly designed for solving large-scale fluid dynamics problems
using second-order spatial accuracy [30–32]. These algorithms usu-
ally have rather significant dispersion errors and if they are not cen-
tered schemes they also have large dissipation errors, making it hard
to accurately compute fine structures in the flow field using them
[33]. There are two ways to improve the resolution of these meth-
ods; one is to refine the grid and the other is to construct a high-order
accurate scheme. Our approach here is to test and evaluate different
high-order formulations for instantaneous and statistical properties
of two-dimensional turbulence and compare their accuracy and effi-
ciency with those of the pseudospectral and the second-order
schemes. Furthermore, it has been shown by Kravchenko and Moin
[34] that the subgrid-scale models in LES are effective only if central
discretization of order higher than two is employed. With this in
mind, we will investigate the behavior of four different families of
high-order accurate finite difference methods in the decay of two-
dimensional isotropic turbulence.

High-order finite difference schemes can be formulated to re-
duce the truncation errors associated with the difference approxi-
mations. A straightforward Taylor series expansion of a pointwise
discretization under certain assumptions results in a family of
the explicit difference (ED) schemes. The compact difference (CD)
schemes feature high-order accuracy with smaller stencils and
smaller truncation errors than the ED schemes, and have been em-
ployed as an alternative to spectral methods in simulations of tur-
bulence with great flexibility [35]. On the other hand, increasing
the stencil size allows us to optimize the weight coefficients in
the difference equation. This strategy leads to the dispersion-rela-
tion-preserving (DRP) schemes [36], which have been used mostly
in acoustics. Another strategy to construct a numerical scheme is
based on the conservation properties of the discrete form of the
equations. Arakawa [37] suggested that the conservation of energy,
enstrophy, and skew-symmetry is sufficient to avoid computa-
tional instabilities stemming from non-linear interactions. The
conservation and stability properties of the Arakawa scheme were
investigated by Lilly [31] by means of spectral analysis along with
several first and second-order time integration methods. In the
present work, we test several Runge–Kutta methods for time inte-
gration, although the primary goal here is to analyze the accuracy
of these high-order accurate spatial differencing methods for the
long-term evolution of complex two-dimensional turbulent flows.
For finite difference schemes, the combination of differentiation er-
rors and non-linear truncation and aliasing errors, which usually
manifest themselves in the high wavenumbers of the resolved
scales, determines the overall error at the small scales. Looking
at the accuracy of the whole solution procedure we also investigate
the resolution requirements for these finite difference families, the
effects of the order of the schemes, and the importance of the
global conservation properties.

The paper is organized as follows: the mathematical formula-
tion of the problem is given in Section 2. The numerical methods
are presented in Section 3 with descriptions of high-order accurate
spatial discretization schemes, temporal discretization algorithms,
and an efficient fast Poisson solver algorithm. These schemes are
validated in Section 4 by simulating the Taylor–Green decaying
vortex benchmark problem for the unsteady incompressible Na-
vier–Stokes equations. The effective accuracies of these methods
are also provided in this section, and are confirmed to be the the-
oretical accuracies of the schemes. Section 5 presents a careful
numerical investigation of their performance for a challenging
benchmark problem which consists of strong shear layers. The re-
sults for two-dimensional isotropic homogeneous decaying turbu-
lence are provided in Section 6. The behavior of these nine different
spatial schemes are tested in terms of accuracy and efficiency. The
effects of several explicit Runge–Kutta time advancement tech-
niques on the whole solution procedure are also analyzed. In addi-
tion, the Reynolds number (Re) dependency of the turbulence
statistics is illustrated in this section. Final conclusions and some
comments on the performance of these schemes are drawn in Sec-
tion 7.

2. Mathematical model

The governing equations for two-dimensional incompressible
flows can be written in a dimensionless form of the vorticity-
stream function formulation as
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along with the kinematic relationship between vorticity and stream
function according to a Poisson equation, which is given as

@2w
@x2 þ

@2w
@y2 ¼ �x: ð2Þ

From a computational point of view, this formulation has sev-
eral advantages over the primitive variable formulation. It elimi-
nates pressure from the Navier–Stokes equations and hence has
no corresponding odd–even decoupling between the pressure
and velocity components, as well as projection inaccuracies usually
observed in fractional step approaches [38]. Therefore, the usage of
a collocated grid does not produce any spurious modes in the vor-
ticity-stream function formulation. The vorticity-stream function
formulation automatically satisfies the divergence-free condition
and allows one to reduce the number of equations to be solved.

The main objective of our work is to test and evaluate different
frameworks for high-order accurate finite difference schemes and
compare them with a spectrally accurate pseudospectral method
for two-dimensional isotropic turbulent flows. In fact, to be able
to compare the numerical schemes more precisely we restricted
ourselves to periodic boundary conditions and a uniform Cartesian
grid. Consequently, we eliminated errors coming from the mesh
non-uniformities and inconsistent boundary schemes. It should
also be noted that using the vorticity-stream function formulation
on a collocated grid provides us with an ideal computational
setting in which to test the characteristics of the numerical
schemes by eliminating any possible errors coming from projec-
tion inaccuracies.

3. Numerical methods

The objective of the present work is to test and evaluate differ-
ent frameworks for high-order accurate finite difference schemes
and compare them with a spectrally accurate pseudospectral
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