
A generic interface for parallel cell-based finite element operator application

Martin Kronbichler ⇑, Katharina Kormann
Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, 75105 Uppsala, Sweden

a r t i c l e i n f o

Article history:
Received 6 October 2011
Received in revised form 4 April 2012
Accepted 10 April 2012
Available online 21 April 2012

Keywords:
Finite/spectral element method
Matrix-free method
Sum-factorization
Hybrid parallelization

a b s t r a c t

We present a memory-efficient and parallel framework for finite element operator application imple-
mented in the generic open-source library deal.II. Instead of assembling a sparse matrix and using
it for matrix–vector products, the operation is applied by cell-wise quadrature. The evaluation of
shape functions is implemented with a sum-factorization approach. Our implementation is parallel-
ized on three levels to exploit modern supercomputer architecture in an optimal way: MPI over
remote nodes, thread parallelization with dynamic task scheduling within the nodes, and explicit vec-
torization for utilizing processors’ vector units. Special data structures are designed for high perfor-
mance and to keep the memory requirements to a minimum. The framework handles adaptively
refined meshes and systems of partial differential equations. We provide performance tests for both
linear and nonlinear PDEs which show that our cell-based implementation is faster than sparse
matrix–vector products for polynomial order two and higher on hexahedral elements and yields
ten times higher Gflops rates.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element problems are often solved by evaluating dis-
crete differential operators like in iterative linear solvers [1] or
time stepping schemes. This makes the operator evaluation—in
particular matrix–vector products for the linear case—the central
and usually most time-consuming component in finite element
codes. Nonlinear problems are usually handled by assembly of
residuals and linearization to obtain coefficient matrices (re-
assembled from one iteration to the next). Many generic finite
element libraries like deal.II [2,3], DiffPack [4,5], DUNE [6,7],
FEniCS/Dolfin [8,9], Getfem++ [10], libMesh [11], OOFEM [12],
or PLTMG [13] separate finite element computations from linear
algebra and rely on sparse matrix–vector (SpMV) kernels in
iterative solvers, either by direct implementation or interfaces
to specialized linear algebra packages like PETSc [14,15] or Trili-
nos [16,17]. In this article, we want to challenge the view of
strictly separating linear algebra from finite element assembly
routines.

We present a framework that exploits the special structure of
the finite element operation as the differential operator is applied.
Instead of assembling a global sparse matrix, we only store the
unit cell shape function information, the enumeration of degrees
of freedom, and the transformation from unit to real cell. For

most configurations, this approach reduces the storage require-
ments considerably, at a low increase or even reduction of arith-
metic operations compared to sparse matrices. A reduced
memory requirement of the operator representation promises im-
proved wall times through higher Gflop rates (billion arithmetic
operations per second) because SpMVs are usually limited by
memory bandwidth rather than arithmetic throughput [18, chap-
ter 7]. Even though attempts have been made to tune SpMV ker-
nels [19,20] or to allow only problems with structured non-zero
pattern [21], Gflops rates rarely exceed 2–20% of peak arithmetic
throughput.

Besides poor performance characteristics of sparse matrix–vec-
tor products, the number of nonzero elements per row in the ma-
trix for a (p � 1) th order finite element in d dimensions is
proportional to pd, rendering high order methods increasingly
expensive. If we split the application of the FE operator into a
function evaluation and integration step described by unit cell
shape functions and derivatives, the shape information can be ap-
plied for one dimension at a time for basis functions that are de-
rived from a tensor product. This restructuring reduces the
computational complexity to d2p operations per degree of free-
dom and is usually referred to as sum-factorization in the litera-
ture [22].

The sum-factorization approach is a special form of a cell-based
strategy. Early implementations of finite element methods often
stored stiffness matrices as a collection of cell matrices and indices,
a so-called element-by-element storage scheme, see e.g. [24,25].
However, those approaches rather increase memory consumption

0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.04.012

⇑ Corresponding author. Tel.: +46 184712990.
E-mail addresses: kronbichler.martin@gmail.com (M. Kronbichler), katharina.

kormann@it.uu.se (K. Kormann).

Computers & Fluids 63 (2012) 135–147

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://dx.doi.org/10.1016/j.compfluid.2012.04.012
mailto:kronbichler.martin@gmail.com
mailto:katharina.kormann@it.uu.se
mailto:katharina.kormann@it.uu.se
http://dx.doi.org/10.1016/j.compfluid.2012.04.012
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


because of data duplication for nodes of higher valence and are
therefore rarely efficient. Recently, cell-based strategies without
explicit matrix storage have been considered for GPU program-
ming [26,27], and used in application-specific software like SPEC-
FEM 3D [28]. However, these approaches have been limited to
certain applications and do not target general finite element tools
that provide a wider spectrum of functionality like mesh adapta-
tion. Cantwell et al. [29] have compared global sparse matrices,
local matrices (an element-by-element approach), and sum-
factorization for the Helmholtz problem in the special software
Nektar++. However, their implementation uses BLAS routines for
evaluating the components in sum-factorization, which implies
function call overheads and relatively poor cache usage for low
to moderate polynomial order. Instead, we choose to create spe-
cially adapted data types and kernels (that are tightly integrated
into the broad computation facilities of the deal.II library for
the ease of use). The discussion of efficient algorithms with partic-
ular focus on memory efficiency for obtaining high computational
performance is the major contribution of this article, including
explicitly low and moderate order finite elements. Our framework
includes constraints to enable adaptive mesh refinement with
hanging nodes. The implementation is tailored to exploit parallel-
ism, including vectorization, shared and distributed memory com-
putations on thousands of processors. This approach is also
beneficial for nonlinear PDEs and time-dependent coefficients
where the assembly of a constant matrix is not possible in the first
place.

The outline of the article is as follows. In the next section, we
present the cell-based approach. We also consider a special type
of element based on the Gauss–Lobatto quadrature rule that has
particularly nice properties. Section 3 presents adapted data struc-
tures and Section 4 the parallelization strategies. In Section 5, per-
formance tests for a sample problem are collected and discussed.
Section 6 considers more advanced uses of the operator application
for linear and nonlinear problems. Finally, Section 7 concludes the
article.

2. Cell-based implementation of FE operations

Let us consider a finite element Galerkin approximation of a
(possibly nonlinear) operator A that takes a vector u as input and
computes the integrals of the operator multiplied by trial functions
/i, i = 1, . . . , n, giving an output vector v. The operation can be ex-
pressed as a sum of ncells cell-based operations. This gives the gen-
eral structure of the operation,

v ¼ AðuÞ ¼
Xncells

k¼1

CT PT
k AkðPkCuÞ: ð1Þ

By Pk, we denote the matrix that defines the location of cell-re-
lated degrees of freedom in the global vector and C takes care of
hanging node constraints that are necessary to maintain C0 conti-
nuity on adaptively refined meshes (cf. Section 3.1 for details). Fi-
nally, Ak denotes the representation of operator A on cell k. For
linear PDEs, the operation A(u) corresponds to a matrix–vector
product. In that case, CT P

kPT
k AkPk

� �
C describes the construction

of a matrix A by element assembly and final application of con-
straints, cf. [30].

If we take into account that the cells are partitioned among sev-
eral MPI processes and not all degrees of freedom relevant to a gi-
ven subdomain are owned by the respective processor (see
Section 4.1), the steps for one operator application are as summa-
rized in Algorithm 2.1.

Algorithm 2.1

(Prototype finite element operator application)
1. update_ghost_values: Import vector values from other

MPI processes that are needed for computations on locally
owned cells associated with the present MPI process.

2. loop over locally owned cells (thread-parallelized on each
MPI node):
(a) Extract local vector values on cell: uk = (PkC)u.
(b) Evaluate local operation vk = Ak(uk) by efficient

quadrature.
(c) Add the local contributions into the global result vec-

tor, v v + (PkC)Tvk.
3. compress: Exchange of information computed on locally

owned cells for degrees of freedom owned by another
MPI process.

Step (2b) above can be implemented by explicitly forming and
storing an array of the local matrices Ak for linear problems. For
avoiding the storage of all matrix data, alternatives are to

� Compute Ak(u) by quadrature on cell k: Evaluate the FE function
uh and/or its derivatives on all quadrature points and test by all
trial functions related to the cell.
� Compute matrix representation Ak on the fly and then Ak uk. This

is only efficient for linear operators and simple geometries that
are described by constant Jacobian transformations, as used e.g.
in FEniCS [8,9].

Because of its efficiency and generality, we discuss the first
variant.

2.1. Local quadrature approach

As a prototype operation, let us consider the Laplacian with var-
iable coefficient,

�r � KðxÞrð�Þ; ð2Þ

where K(x) is a symmetric d � d matrix. The corresponding FE oper-
ator evaluates the weak form

ðr/j;KruhÞX; j ¼ 1; . . . ;n; ð3Þ

where uhðxÞ ¼
Pn

i¼1/iðxÞuðiÞ denotes the global FE interpolation asso-
ciated with the input vector u and {/j,j = 1, . . . ,n} is the set of all basis
functions tested with in the weak form. Let us further denote by
f/̂jðx̂Þ; j ¼ 1; . . . ;pdg the unit cell basis functions and for a quadrature
point xq we denote by x̂q the corresponding point on the unit cell.
Here (p � 1) is the degree of the finite element. As opposed to matrix
approaches, we explicitly evaluate the gradient of the local FE inter-
polation uh

kðxqÞ ¼
Ppd

i¼1/̂iðx̂qÞuðiÞk on quadrature points xq,

ruhðxqÞ ¼
Xpd

i¼1

J�T
k ðx̂qÞr̂/̂iðx̂qÞuðiÞk ¼ J�T

k ðx̂qÞ
Xpd

i¼1

r̂/̂iðx̂qÞuðiÞk ; ð4Þ

wherer denotes the gradient in real coordinates, r̂ the gradient on
the unit cell, and J�T

k ðx̂qÞ is the inverse transposed Jacobian of the
transformation from the unit to the real cell. Note that our imple-
mentation evaluates unit-cell gradients first (summation), and ap-
plies the geometry in a second step.

Each component i of the vector vk = Akuk corresponds to an inte-
gral, which is evaluated through quadrature:

v ðiÞk ¼
X

q

ðr/iðxqÞT KðxqÞruhðxqÞÞwqjdet Jkðx̂qÞj

¼
X

q

r̂/̂iðx̂qÞT J�T
k ðx̂qÞ

� �T
KðxqÞruhðxqÞ

� �
wqjdet Jkðx̂qÞj; ð5Þ

136 M. Kronbichler, K. Kormann / Computers & Fluids 63 (2012) 135–147



Download	English	Version:

https://daneshyari.com/en/article/768711

Download	Persian	Version:

https://daneshyari.com/article/768711

Daneshyari.com

https://daneshyari.com/en/article/768711
https://daneshyari.com/article/768711
https://daneshyari.com/

