Contents lists available at SciVerse ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Short communication

Determination of dissociation parameters of weak acids in different media according to the isohydric method

Tadeusz Michałowski^{a,*}, Bogusław Pilarski^b, Agustin G. Asuero^c, Agnieszka Dobkowska^b, Sławomir Wybraniec^a

^a Faculty of Engineering and Chemical Technology, Cracow University of Technology, 31-155 Cracow, Poland

^b P.P.H.U. Cerko s.c., 80 299 Gdańsk, Afrodyty 9, Poland

^c Department of Analytical Chemistry, The University of Seville, 41012 Seville, Spain

ARTICLE INFO

Article history: Received 15 June 2011 Received in revised form 29 August 2011 Accepted 1 September 2011 Available online 7 September 2011

Keywords: Acid-base equilibria Aqueous solutions Titration Dissociation constants

ABSTRACT

The isohydricity (pH constancy) principle is referred to the pair of solutions: weak acid (HL, C_0 mol/L) and strong acid (HB, C mol/L) when mixed e.g., according to titrimetric mode. Such a case takes place if the relation $C_0 = C + C^2 \times 10^{pK_1}$ is valid, where $pK_1 = -\log K_1, K_1$ – dissociation constant for a weak monoprotic acid HL. This principle, outlined and formulated in earlier paper (Michałowski et al., *Talanta* 82 (2010) 1965), is the basis for a sensitive method of pK_1 determination, confirmed for a series of weak acids in presence of basal electrolytes or in water + organic solvent (dimethyl sulphoxide, methanol, isopropanol) media. The results of titrations were elaborated according to principles of regression analysis, with use of least squares method. A new criterion for precision of the results obtained according to this method is formulated. The pK_1 values obtained are comparable with ones found in literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The term "isohydric" refers to a pair of solutions having the same pH value. The isohydricity concept gained its quantitative utterance in the formulae derived in the paper issued lately [1], where were also stated, that the isohydricity property is limited to the systems where only acid–base equilibria are involved. In other instances, protons are generated/consumed in side (redox, precipitation and/or complexation) reactions. The isohydricity principle can be categorized not only as an interesting curiosity of electrolytic systems, however.

The isohydricity has also some relevance to the buffering action and buffer capacity [2,3], and shows some analogies with pHstat action and pH-static titration [4,5]. Moreover, it can also be considered as a valuable and sensitive tool for determination/validation/verification of acidity constants ($pK_1 = -\log K_1$) of weak monoprotic acids (HL), where

$$K_1 = \frac{[H^+][L^-]}{[HL]}$$
(1)

In [1], the isohydricity concept was exemplified by the systems composed of different pairs of mono- or polyprotic acids or their salts. In particular, a weak acid HL (C_0 mol/L) and strong acid HB

(C mol/L) form a pair of isohydric solutions, provided that the relation

$$C_0 = C + C^2 \times 10^{pK_1} \tag{2}$$

is valid. In this case, pH of the solution obtained after addition of VmL of Cmol/L HB (as titrant, T) into V_0 mL of C_0 mol/L HL (as titrand, D) remains constant, irrespectively of V value. Similarly, pH is constant after addition of VmL of C_0 mol/L HL into V_0 mL of C mol/L HB, if C_0 and C are interrelated as in Eq. (2). Moreover, for the pair (HL, HB) of the isohydric solutions, the ionic strength (I_0 , mol/L) of the mixture remains unchanged ($I_0 = C$) after mixing the composing solutions at different proportions, particularly when the mixing is carried out according to titrimetric mode, in quasistatic manner, under isothermal conditions; the last requirement is involved with possible changes in K₁ value, resulting from heat effects occurred during the titration. The true (not approximate) constancy inherent in the isohydric systems is a unique property, testifying on account of this method.

The isohydric method is based on preparation of a series of solutions of both acids: weak acid HL (C_{0i}^* mol/L) and strong acid HB (C mol/L), whose concentrations (C_{0i}^* , C) are interrelated in the equality (see Eq. (2))

$$C_{0i}^* = C + C^2 \times 10^{pK_{1i}^*} \quad (i = 1, \dots, n)$$
(3)

where pK_{1i}^* are the pre-assumed numbers, not far from real pK_1 value (Eq. (2)). The n pairs {(HL, HB)_i} of the solutions (*i* = 1,...,*n*) are mixed according to a common pH-metric titration procedure,

^{*} Corresponding author. Tel.: +48 12 628 21 77.

E-mail addresses: michalot@o2.pl, michalot@chemia.pk.edu.pl (T. Michałowski).

^{0039-9140/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.talanta.2011.09.002

Nomenclature		
C C_0 D HB HL K_1 LS MOH $pK_1 = -lo$	concentration [mol/L] of HB concentration [mol/L] of HL titrand (solution titrated) strong acid weak acid dissociation constant for HL least squares method strong base $\log K_1$ acidity parameter	
p <i>K</i> [*] S T <i>V</i>	pre-assumed pK ₁ -value organic solvent titrant volume [mL] of T	
V_0 Z	volume [mL] of D basal electrolyte	

where V mL of C mol/L HB is added (as titrant T), in portions, into V_0 mL of C_{0i}^* mol/L HL (considered as titrand, D). It is advisable to choose the pre-assumed pK_{1i}^* values smaller and higher than the pK_1 value; in this case, the true pK_1 value can be found by interpolation that seems to be more advantageous than extrapolation.

One can also apply another viewpoint, based on simple checking the credibility of pK_1 values, known from literature data. Similarly, one can assume equal concentrations (C_1) of a basal electrolyte MB_r in both solutions mixed: HB (C)+MB_r (C_1) and HL (C_0)+MB_r (C_1); in this case, $I = C + C_1$ for r = 1 and $I = C + 3C_1$ for r = 2 (e.g., MgCl₂). The same procedure can also be applied to the systems with mixed solvents (binary-solvent systems [6]). Both approaches will be applied in the present paper.

As indicated in [6,7], it is advisable to apply to pK_1 the term "acidity parameter" for "acidity constant" when referring to the systems with mixed-solvent media, and binary-solvent media in particular, whose composition can be expressed by mole fraction, x, of the solvent with higher molar mass. Particularly, in binary-solvent media, W + S, composed of water (W = H₂O) and an organic (o) solvent S, we have $x = x_S$ for the mole fraction of S, and $pK_1 = pK_1(x)$. Denoting by $x_{Vo} = V_{(o)}/(V_{(o)} + V)$ the volume fraction of S in binarysolvent medium (W + S) and neglecting the contraction effect, one can calculate

$$x_{\rm S} = \frac{x_{Vo}}{\chi_{\rm WS} \cdot (1 - x_{Vo}) + x_{Vo}} \tag{4}$$

where [1]

$$\chi_{\rm WS} = \left(\frac{\rho_{\rm W}}{\rho_{\rm S}}\right) \cdot \left(\frac{M_{\rm S}}{M_{\rm W}}\right) \tag{5}$$

and ρ_X , M_X – density [g/mL] and molar mass [g/mol] of X = W, S.

The pH titrations $(T \rightarrow D)$ in binary-solvent media were made in D+T systems: HL $(C_{0i}^*, W+S)$ +HB (C, W+S), where the solvent composition, expressed by x_S value (Eq. (4)), was the same in both solutions mixed. The experiments were made at different x_S values.

2. Experimental

2.1. Apparatus and reagents

The pH titrations were carried out in 30 mL thermostated, selfmade measuring cell, fitted with magnetic stirrer and PT 1000 temperature sensor. The temperature was kept at 25.0 ± 0.2 °C by means of the Huber thermostat system. The pH measurements and titrations were performed with Cerko Lab System microtitrator, equipped with syringe pump and pH electrode (Hydromet – ERH-13-6 type and Ionode, IJ44C type). The electrode was standardized with aqueous standard buffers (from Chempur Company). Other preparatory steps were the same as the ones presented in [1]. The experimental points { $(V_j, pH_j) | j = 1, ..., N$ }, N = 200, were registered in every single titration, made within V-range (0, 4.0) mL; the titrant T was added stepwise, in aliquots of 0.02 mL, with 8 or 10-s pause, into $V_0 = 3.0$ mL of titrand D.

The reagents, of analytical purity grade, were purchased from commercial sources: benzoic acid from Chempur (pure p.a. >99.5%), chloroacetic acid from Fluka (pure p.a. >99%, m.p. 61–62 °C), p,L-mandelic acid from Merck (pure, >99%), salicylic acid from Sigma–Aldrich GmbH (extra pure, 99.5–100.5%). All chemicals were used without further purification. HCl solution was supplied by Chempur.

Background electrolytes were purchased from commercial suppliers and used as received: potassium chloride from POCH S.A. (pure p.a.), sodium chloride from Carl Roth GmbH (\geq 99.9%), magnesium chloride from Sigma–Aldrich Chemie GmbH (anhydrous, \geq 98%, m.p. 714 °C) and potassium nitrate from POCH S.A. (pure p.a.). Sodium carbonate (from Chempur Company) was calcined (220 °C) before standardization of HL and HCl.

Doubly distilled (freshly prepared) water (W), with conductivity not exceeding 0.18 μ S/cm, was used. Other solvents (S): methanol (CH₃OH, analytical grade, 99.5%), dimethylsulphoxide (CH₃)₂SO, HPLC grade, 99.5%) were supplied by POCH S.A. 2-Propanol ((CH₃)₂CHOH, pure p.a., min. 99,7%) were purchased from Chempur. The mixed solvents, W+S, were prepared by mixing W and S in appropriate proportion, x_{Vo} (% v/v) (Eq. (4)) and cooling in capped flask.

Stock solutions of HL, HCl and other substances were prepared by dissolution of appropriate amounts of the preparations in (a) W or (b) W+S. The HCl and HL stock solutions were standardized by pH titration against Na_2CO_3 . The D+T systems:

(a) $(HL(C_{0i}^{*})+MB_{r}(C_{1}))$, $(HB(C)+MB_{r}(C_{1}))$ and (b) $(HL(C_{0i}^{*},W+S))$, (HB(C,W+S))

were obtained by dilution of the starting reagents in (a) W, or (b) W+S. At given C-value, C_{0i}^* were calculated from Eq. (3).

2.2. Procedures

The procedure applied was similar to one described in [1]. The pH titrations: (a) (HB (C) + MB_r (C₁)) \rightarrow (HL (C_{0i}^*) + MB_r (C₁)), and (b) (HCl (C, W + S) \rightarrow HL (C_{0i}^* , W + S)) were made (*i* = 1, . . . , 5) and the points {(V_{ij} , pH_{ij}) | *j* = 1, . . . , *N*} (*N*=200) obtained in *i*-th titration were approximated by the lines

$$\mathbf{pH} = a_i + b_i \cdot \mathbf{V} \tag{6}$$

whose parameters: a_i , b_i were determined according to LS method [8,9]. The slopes b_i of the lines (6) are the basis for further considerations. Namely, the collected points (pK_{1i}^*, b_i) , i = 1, ..., 5, are approximated by the straight line

$$b = p + q \cdot pK_1^* \tag{7}$$

whose parameters p, q are determined according to LS method. Then the value

$$pK_1^* = pK_1 = -\frac{p}{q}$$
(8)

calculated at the slope b = 0, is considered as the evaluation of the true pK_1 value for HL.

In order to confirm this pK_1 value (Eq. (8)), sixth titration was made at $pK_1^* = pK_1$ in Eq. (3). Low (close to zero) value of the slope *b*, i.e. pH = const within an experimental error, ca. pH ± 0.01, made at $pK_1^* = pK_1$ in pH titration, is the confirmation of the pK_1 value.

Download English Version:

https://daneshyari.com/en/article/7687306

Download Persian Version:

https://daneshyari.com/article/7687306

Daneshyari.com