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1. Introduction

The DSTO-RAAF approach to the management of fatigue cracking in combat and trainer aircraft makes use of the “lead
crack” concept [1]. In this approach, the life of the fleet is determined by lead fatigue cracks which in [1] were defined to
have the following features:

(a) Crack growth initiates from small naturally occurring defects or discontinuities, such as inclusions and pits, which
have dimensions that are equivalent to a fatigue crack-like size typically of about 10 um in depth.

(b) Crack growth essentially starts from the day that the aircraft enters service. (This implies that the fatigue threshold
AKy, is very small.)

As such understanding the growth of fatigue cracks from small naturally occurring defects is of fundamental importance
to managing the Australian fleet. Indeed, the central role that small cracks play in understanding the durability of aircraft is
highlighted in [2]. Furthermore, as stated by Lados et al. [3]:

“The use of long crack data can lead to significantly non-conservative estimates of the fatigue response and serious design
errors.”

* Corresponding author. Tel.: +61 398786265.
E-mail address: rhys.jones@monash.edu (R. Jones).

1350-6307/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engfailanal.2012.10.023


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engfailanal.2012.10.023&amp;domain=pdf
http://dx.doi.org/10.1016/j.engfailanal.2012.10.023
mailto:rhys.jones@monash.edu
http://dx.doi.org/10.1016/j.engfailanal.2012.10.023
http://www.sciencedirect.com/science/journal/13506307
http://www.elsevier.com/locate/engfailanal

150 R. Jones, D. Tamboli/Engineering Failure Analysis 29 (2013) 149-166

The extent of these non-conservative estimates is aptly illustrated in [4] where it is shown that using FASTRAN together
with long crack da/dN versus AK data to predict the crack growth from a small 0.003 initial defect in a F/A-18 centre barrel
crack gave an estimate of the fatigue life that was more 300% greater than that seen in the test. Similarly Appendix C reveals
that the use FASTRAN together with short crack da/dN versus AK data can also lead to non-conservative estimates for the
fatigue life of a structure.

This means that it is important to address, and hopefully overcome, the so called “short crack anomaly” which is one of
the basic problems in materials science and particularly in fatigue crack growth prediction. Here it should be noted that as
stated in [1] and can be seen from the experimental data presented in [5] that typical “small natural initiating defects” in
military aircraft have a size that is of the order of 0.01 mm. This (initiating defect) size is consistent with the work of Merati
[6], where it was found that the size of initial defects in civil transport aircraft lie in the range 0.009-0.029 mm and with the
paper by Schijve [2] where it was reported that the size of initial defects in civil transport aircraft lie in the range 0.007-
0.030 mm. As such when discussing crack growth from small naturally occurring initial discontinuities in aircraft structures
we focus on initial defects that are typically 0.01 mm long/deep. (In this context it should be noted that Section 5.3.1 of the
USAF Damage Tolerant Design Handbook [7] suggests that cracks growing from initial defects greater than between 1.0 and
1.8 mm long behave like “long cracks”. A methodology for modelling crack growth from an arbitrary length initial notch is
proposed in [8] and will be discussed later in this paper.)

The short crack anomaly arises as experimental studies have shown that for a given AK, R ratio and specimen thickness
the increment in the crack length (or depth) per cycle (da/dN) seen in tests on short cracks is significantly greater than that
seen in tests on long cracks. An example of this “anomaly” is shown in Fig. 1, from [9], which compared the growth of short
and long cracks in 2090-T8E41 at R = 0.1. A second example is shown in Fig. 2, from [10], which presents the da/dN versus AK
relationships obtained for AA7050-T7451, which is used in both the F/A-18 Hornet, the F/A-18 Super Hornet and the Joint
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Fig. 1. Short and long crack growth in 2090-T8E41, from [9].
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Fig. 2. Comparison of the various da/dN versus AK test data for 7050-T7451, from [10,13].
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