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a b s t r a c t

In this paper, we suggest two kinds of approximation methods based on Taylor series expansion which
can solve the non-linear equation in entropic lattice Boltzmann model without using any iteration meth-
ods such as Newton–Raphson method. The advantage of our methods is to be able to avoid the load
imbalance in parallel computation which occurs due to the differences of iteration number on each cal-
culation grid. In this study, ELBM simulations using our methods were compared with those using New-
ton–Raphson method for the channel flow past a square cylinder in Re = 1000 and the validity of the
results and computational effort were investigated. As a result, it was found that the solutions obtained
by our methods are qualitatively and quantitatively reasonable and CPU time is shorter than those
obtained by Newton–Raphson method.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice Boltzmann Method (LBM) has been developed as the
method which can solve macro-scale fluid dynamics through
meso-scale approach by calculating translation and collision of
particle. The algorithm appropriates for the parallel computing
using multi-core CPU and GPU computing because, for example,
for well-known LBGK model, only the information of on-site and
the nearest neighbor grid points are required to get the solutions.
But it was known that in well-known LBGK model a solution be-
comes unstable in high Reynolds number (Re) region due to the
disruptive non-linear instability. In order to overcome such short-
coming, entropic lattice Boltzmann model (ELBM) was developed
by Karlin et al. [1–3], and expanded by several researchers recently
[4–7]. ELBM can get stable solution by satisfying the second prin-
ciple of the thermodynamic by imposing the monotonicity and
the minimality of the H-function. However, in the algorithm of
ELBM, non-linear equation must be solved to calculate the relaxa-
tion adjusting parameter which adjusts the relaxation time locally
in such a way that monotonisity of H function is guaranteed. The
non-linear equation solver using the iteration method, such as
Newton–Raphson (N.R.) method, causes the increase of computa-
tional effort for parallel computing due to the load imbalance
which is occurred by the difference of iteration number on each
grid point. In order to avoid such problem, the direct method
which can solve the non-linear equation is required. But there
are a few previous studies [8] about the direct solution method
for the relaxation adjusting parameter. In the present study, we

considered two kinds of approximation methods based on Taylor
series expansion for getting the solution of the non-linear equation
and the methods were applied to a channel flow past a square cyl-
inder in Re = 1000 and the validity of the result and computational
effort were investigated. The detail comparison for accuracy, sta-
bility and efficiency between ELBM with N.R. method and LBGK
model has already investigated in our previous study [9] and it
was found that the ELBM enhances the stability and decreases
the computational effort compared with LBGK model. So, in this
paper, we mainly focuses on the comparison of the results of our
approximation methods with those of ELBM with N.R method with
respect to the accuracy, computational effort and stability.

2. Numerical methods

2.1. Outline of entropic lattice Boltzmann model

In the present work, we treat two-dimensional nine-speed
(D2Q9) ELBM [9]. ELBM is different mainly on two points from
standard LBGK model.

First point, the equilibrium distribution function is derived not
from the expansion of Maxwell–Boltzmann distribution but from
the minimization of H function under the conserving of mass and
momentum. The discrete H function is given as follow

Hðf Þ ¼
Xq�1

i¼0

fi lnðfi=wiÞ; ð1Þ

where fi is the distribution function in i direction, and q is the num-
ber of direction of speed, in the present model q = 9. By calculating
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the minimization problem of Eq. (1), the local velocity equilibrium
distribution function in i direction f eq

i is obtained as follow

f eq
i ¼ wiq

Yd

j¼1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u2

j

q� �
2uj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u2

j

q� �
=ð1� ujÞ

n ocij
� �

;

ð2Þ

where q is the fluid density, d is the number of spatial dimension, uj

is the component of macroscopic velocity in j direction.
Second point, the relaxation time of ELBM is locally adjusted in

such a way that the monotonicity of the H-function is satisfied
through the relaxation adjusting parameter a. The parameter a is
determined by solving following non-linear equation:

Hðf Þ ¼ Hðf þ aDÞ; ð3Þ

where D represents the local non-equilibrium value of distribution
function, feq � f. Once the parameter a is given by solving Eq. (3),
the distribution function at new time step can be obtained by fol-
lowing time developed lattice BGK equation:

fiðxþ ci; t þ 1Þ ¼ fiðx; tÞ þ aff eq
i ðx; tÞ � fiðx; tÞg=ð2s0Þ; ð4Þ

where s0 is the relaxation time in LBGK model. As shown in Eq. (4),
the relaxation time in ELBM s is given by s = 2s0/a, therefore in the
case of a = 2, ELBM is equivalent to LBGK model. From the distribu-
tion function, the macroscopic variables can be calculated by using
following relationship:

q ¼
Xq�1

i¼0

fi;qu ¼
Xq�1

i¼0

cifi ð5Þ

2.2. Approximation method for solving the relaxation adjusting
parameter a

In this section, we represent two methods to approximately
solve the relaxation adjusting parameter a in Eq. (3). For conve-
nience, we call those two methods, ‘Method 1’ and ‘Method 2’,
respectively, below. First of all, let us define a in Eq. (3) as the
sum of the values a� and a0 as follows:

a ¼ a� þ a0; ð6Þ

where a� is the a at one calculation time step before and a0 is the
difference between a and a�. Substituting Eq. (6) into Eq. (3),
right-hand side of Eq. (3) is written as follows:

Hff þ ða� þ a0ÞDg ¼ Hðf þ a�Dþ a0DÞ ¼ Hðf � þ a0DÞ; ð7Þ

where f � ¼ f þ a�D. Assuming a0D� 1, the right hand side of Eq.
(7) can be expanded by Taylor series expansion as follows:

Hðf � þ a0DÞ ¼ Hðf �Þ þ Hðf �Þ0ða0DÞ þ Hðf �Þ00ða0DÞ2=2

þ Hðf �Þ000ða0DÞ3=6þ � � � ; ð8Þ

where subscription 0 represents the partial differential with respect
to f�.In Method 1, the terms order O{(a0D)2}or smaller on the right
hand side of (8) are neglected and then substituting the result into
Eq. (3), Eq. (3) becomes

Hðf Þ ¼ Hðf �Þ þ Hðf �Þ0ða0DÞ: ð9Þ

The second term of right hand side in Eq. (9) is deformed by
using Eq. (1) as:

Hðf �Þ0ða0DÞ ¼ @Hðf �Þ=@f �ða0DÞ ¼ a0
Xq�1

i¼0

½f1þ lnðf �i =wiÞgDi�

¼ a0
Xq�1

i¼0

flnðf �i =wiÞgDi: ð10Þ

Then substituting the Eq. (10) into Eq. (9) and solving the equa-
tion with respect to a0, a0 can be obtained as:

a0 ¼ fHðf Þ � Hðf �Þg
Xq�1

i¼0

flnðf �i =wiÞgDi:

,
ð11Þ

Then by the definition of Eq. (6), we can get approximate solu-
tion of a for Method 1 as below

a ¼ a� þ fHðf Þ � Hðf �Þg
Xq�1

i¼0

flnðf �i =wiÞgDi:

,
ð12Þ

Eq. (12) is equivalent to that of N.R. method in which only one
iteration is carried out.

Whereas, in Method 2, the terms order O{(a0D)3} or smaller on
the right hand side of Eq. (8) are neglected and then substituting
the result into Eq. (3), Eq. (3) becomes as:

Hðf Þ ¼ Hðf �Þ þ Hðf �Þ0ða0DÞ þ Hðf �Þ00ða0DÞ2=2; ð13Þ

where H(f �)00 is the second order partial deferential with respect to
f �, and H(f �)00(a0D)2 in the right hand side of Eq. (13) can be de-
formed by using Eq. (1) as follows:

Hðf �Þ00ða0DÞ2 ¼ f@H2ðf �Þ=@f �2gða0DÞ2 ¼ a0
Xq�1

i¼0

fð1=f �i ÞD
2
i g; ð14Þ

Eq. (13) can rewrite to the quadratic equation with respect to a0

a02Hðf �Þ00D2=2þ a0Hðf �Þ0Dþ Hðf �Þ � Hðf Þ ¼ 0; ð15Þ

by using the quadratic formula, a0 can be obtained as

a0 ¼ f�C2 þ ðC2
2 � 4C1C3Þ1=2g=ð2C1Þ; ð16Þ

where the constant coefficients C1, C2 and C3 in (16) are defined as
follows, respectively:

C1 ¼ Hðf �Þ00D2=2;C2 ¼ Hðf �Þ0D;C3 ¼ Hðf �Þ � Hðf Þ: ð17Þ

Finally, we can get the following approximate solution for Method 2

a ¼ a� þ f�C2 þ ðC2
2 � 4C1C3Þ1=2g=ð2C1Þ: ð18Þ

2.3. Calculation condition

Fig. 1 shows the computed geometry in the present calculation.
A square cylinder which has the size of D is symmetrically placed
in the 2-dimensional channel with respected to the channel cen-
terline and the x-position is 12.5D from the channel inlet. The
channel has the dimension of 8D wide and 50D long. As boundary
condition, parabolic velocity profile with the maximum velocity at
the channel center, Umax (= 0.058) which corresponds to Mach
number of 0.1, is imposed at the inlet boundary, half way
bounce-back conditions are given on the channel walls and the cyl-
inder surface, and at outlet boundary, the distribution functions
are extrapolated from the upstream side of the boundary. We use

50D
12.5D

8D D

y

x

Fig. 1. Definition of the computed geometry.
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