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a b s t r a c t

In this work we present 2D numerical simulations on the migration of a particle suspended in a viscoelas-
tic fluid under Poiseuille flow. A Giesekus model is chosen as constitutive equation of the suspending
liquid. In order to study the sole effect of the fluid viscoelasticity, both fluid and particle inertia are
neglected.

The governing equations are solved through the finite element method with proper stabilization tech-
niques to get convergent solutions at relatively large flow rates. An Arbitrary Lagrangian–Eulerian (ALE)
formulation is adopted to manage the particle motion. The mesh grid is moved along the flow so as to
limit particle motion only in the gradient direction to substantially reduce mesh distortion and reme-
shing.

Viscoelasticity of the suspending fluid induces particle cross-streamline migration. Both large Deborah
number and shear thinning speed up the migration velocity. When the particle is small compared to the
gap (small confinement), the particle migrates towards the channel centerline or the wall depending on
its initial position. Above a critical confinement (large particles), the channel centerline is no longer
attracting, and the particle is predicted to migrate towards the closest wall when its initial position is
not on the channel centerline. As the particle approaches the wall, the translational velocity in the flow
direction is found to become equal to the linear velocity corresponding to the rolling motion over the wall
without slip.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In many practical processes, particles are suspended in fluids in
order to give specific properties to the final composite material (for
example filled polymers, paints, coatings). On the other hand, in
several systems, particles are naturally transported in fluids (i.e.
cells in blood, pollutants in gaseous flows, etc.). Quite often, the
channel dimensions where suspensions flow are comparable to
the particles size (i.e. microfluidic devices), and the suspending
liquid exhibits viscoelastic effects such as normal stresses and
shear-rate dependence of the viscosity.

It is well known that particles suspended in liquids can show
peculiar effects with a phenomenology strongly depending on
the type of the flow as well as on the fluid rheology. One such

effect, of interest here, is cross-streamline migration, i.e., the mo-
tion of the particle orthogonally to the direction of the main flow.
This problem received great interest over the last 50 years.

The first experimental observations on the migration phenome-
non were performed by Segré and Silberberg [1,2]. The authors
studied the macroscopic inertial migration of non-interacting, neu-
trally buoyant spheres in a Newtonian fluid in a tube flow. They
found that the particles migrate away from both the wall and the
channel centerline, and move towards an equilibrium radial posi-
tion of about 0.6 times the tube radius.

Later on, the relevant phenomenology observed by Segré and
Silberberg [1,2] has been experimentally confirmed in several
works [3–5]. Recently, the cross-streamline migration has been
studied at moderately high Reynolds numbers (up to 2500) by
Matas et al. [6]. They observed a motion towards the wall of the
equilibrium radial position found by Segré and Silberberg as the
Reynolds number is increased. The same observations were made
by Eloot et al. [7] where convective transport of neutrally buoyant
spherical particles is studied in capillaries using an on-line
particles detector.
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Perturbation analysis has been widely used to study the effect
of the inertia on the particle migration in shear and Poiseuille flows
giving satisfactory agreement with the experimental observations
[8–10]. Direct numerical simulations have also been performed
in order to examine the effect of a finite Reynolds number on the
cross-streamline migration. An extensive literature has been pro-
duced, focusing on several aspects such as neutrally and non-neu-
trally buoyant particles [11,12], lift-off correlations [13], existence
of multiple equilibrium positions [14]. Recently, the analysis has
been extended to 3D systems confirming the phenomenology
experimentally observed [15–17]. For a comprehensive review of
the inertial effects on the particle migration the reader can refer
to [17] and the references therein.

Concerning the effect of the viscoelasticity of the suspending
fluid, migration of solid spherical particles at low Reynolds number
in non-Newtonian fluids has been studied experimentally by Ma-
son and co-workers [18–20]. The results showed that the magni-
tude and direction of migration is strictly dependent on the
rheological properties of the suspending medium. For an essen-
tially non-elastic, shear-thinning fluid they observed that neutrally
buoyant solid spheres migrate toward the wall in Poiseuille flow.
On the contrary, in an viscoelastic medium the migration in the
minimum shear-rate direction in Poiseuille flow (i.e. toward the
centerline) was observed. However, it should be mentioned that
the rheological data were incomplete in these works.

Recently, the cross-streamline migration of bubbles in a visco-
elastic channel flow has been studied [21]. When a surfactant is
used, making the particle–fluid interface rigid, a transverse migra-
tion is observed with direction towards the channel walls. It must
be remarked that in these experiments the particle size is compa-
rable with the channel dimension.

By using a perturbative method, Ho and Leal [22] developed an
analytical theory by considering a Second Order Fluid as suspend-
ing medium. They found that, due to the normal stresses, a particle
migrates in the direction of decreasing absolute shear rate, which
is towards the axis channel in Poiseuille flow.

Joseph and co-workers [12–14] made 2D direct numerical sim-
ulations taking into account the viscoelasticity of the suspending
liquid, modeled as an Oldroyd-B fluid with a Bird–Carreau shear-
rate viscosity dependence. They found that the migration direction
depends on the competition of inertia, blockage ratio, elasticity and
shear thinning of the fluid. Limiting to the Poiseuille flow case, they
indicate that the elasticity of the fluid drives the particle towards
the axis of the channel, whereas shear thinning makes the particle
migrate towards the closest wall.

In this work we perform a systematic numerical study on the
migration of a particle suspended in a viscoelastic fluid under
Poiseuille flow at moderately large flow rates (as compared with
[12]). The suspending medium is modeled as a Giesekus fluid
[23], a model often capable of accurately describing experimental
viscoelastic data. The study is carried out by neglecting fluid and
particle inertia, and the analysis is performed through 2D Direct
Numerical Simulations. The influence of the flow rate, particle
dimension (as compared to the gap size) and the shear thinning
on the migration velocity are investigated.

The momentum balance is discretized through the DEVSS (Dis-
crete-Elastic-Viscous-Split-Stress) method that is one of the most
robust formulations currently available. The viscoelastic
constitutive equation is stabilized by implementing the SUPG
(Streamline-Upwind-Petrov-Galerkin) technique. Furthermore, a
log-conformation representation of the conformation tensor is
used. Finally, an ALE particle mover [24] is adopted to handle the
particle motion. To easily manage the particle motion, the mesh
grid is translated along the flow direction with a velocity equal
to the particle x-velocity. Consequently, the relative x-distance
between the mesh nodes and the particle is kept unchanged and

the particle only moves along the y-direction (i.e., the migration
direction). In this way, remeshing due to ALE approach is only
needed once-twice per simulation, always preserving the accuracy
of the solution.

2. Governing equations

In Fig. 1a a schematic diagram of the problem is presented: a
single, rigid, non-Brownian, inertialess, circular particle (2D prob-
lem) moves in a channel filled by a viscoelastic fluid in Poiseuille
flow. The particle with diameter Dp = 2Rp, denoted by P(t) and
boundary @P(t), moves in a rectangular domain, X, with dimen-
sions L and H along x- and y-axis respectively and external bound-
aries denoted by Ci (i = 1, . . . ,4). The Cartesian x and y coordinates
are selected with the origin at the center of the domain. On the
upper and lower boundaries, no-slip conditions are set whereas a
flow rate Q is imposed on the left (inflow) boundary. Finally, peri-
odicity is imposed on the left and right boundaries. For an unfilled
Newtonian fluid, this would generate the well-known parabolic
velocity profile depicted in Fig. 1b (dashed line). In the figure, the
maximum velocity umax and the average velocity �u are also re-
ported. The solid line is the velocity profile for a viscoelastic fluid
with a constitutive equation and model parameters chosen as dis-
cussed below and with the same flow rate as the Newtonian fluid.

The vector xp = (xp, yp) gives the position of the center of the par-
ticle P whereas the particle angular rotation is denoted by H = Hk,
where k is the unit vector in the direction normal to the x–y plane.
The particle moves according to the imposed flow and its rigid-
body motion is completely defined by the translational velocity,
denoted by Up = dxp/dt = (Up,Vp) and angular velocity, x = dH/
dt = xk.

The governing equations for the fluid domain, X � P (t), neglect-
ing inertia, read as follows:

r � r ¼ 0 ð1Þ
r � u ¼ 0 ð2Þ
r ¼ �pI þ 2gsDþ s ð3Þ

Eqs. (1)–(3) are the momentum balance, the mass balance (continu-
ity) and the expression for the total stress, respectively. In these
equations r, u, p, I, gs, D, are the stress tensor, the velocity vector,
the pressure, the 2 � 2 unity tensor, the viscosity of a Newtonian
‘solvent’, and the rate-of-deformation tensor, respectively. The vis-
coelastic stress tensor, s, is written as (for the constitutive model
chosen, see below):

s ¼ g
k
ðc � IÞ ð4Þ

where c is the ‘conformation tensor’, g is the polymer viscosity, and
k is the relaxation time.

We will model the viscoelastic fluid with the Giesekus constitu-
tive equation (for c):

k c
r
þc � I þ aðc � IÞ2 ¼ 0 ð5Þ

where a is the so-called mobility parameter that modulates the
shear thinning behavior. The symbol (r) denotes the upper-con-
vected time derivative, defined as:

c
r
� @c
@t
þ u � rc � ðruÞT � c � c � ru ð6Þ

Notice that the zero-shear-rate viscosity is given by g0 = gs + g.
The boundary and initial conditions are:

u ¼ Up þx� ðx� xpÞ on @PðtÞ ð7Þ
u ¼ v ¼ 0 on C1 and C3 ð8Þ
cjt¼0 ¼ c0 ð9Þ
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