Trends in Analytical Chemistry 54 (2014) 65-74

Contents lists available at ScienceDirect

Trends in Analytical Chemistry

journal homepage: www.elsevier.com/locate/trac

Review Analytical techniques for measuring nitrous oxide *

Trevor D. Rapson*, Helen Dacres

CSIRO Ecosystem Sciences and Food Futures Flagship, GPO Box 1700, 2601 ACT, Australia

ARTICLE INFO

Article history: Available online 7 December 2013

Keywords: Amperometric sensor Emissions measurement Fourier-transform infrared FTIR Gas chromatography Laser-absorption spectroscopy Nitrous oxide Sensor Spatial variation Trace-gas analysis

ABSTRACT

Nitrous oxide (N₂O) is estimated to contribute about 6% of the global warming effect due to greenhouse gases. N₂O is also predicted to be the single most important ozone-depleting emission in the twenty-first century. Great progress has been made in N₂O measurement, but there is a critical need for sensors that can be used to map the spatial variation of N₂O emissions over a wide area. In this article, we outline where N₂O measurement is required, describe advances that have been made in developing sensitive analytical techniques and review some promising new technologies. Our aim is to assist both those new to N₂O measurement, enabling them to select the most appropriate of the available technology, and to inform those developing new analytical techniques.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	66
2.	Methods for measuring nitrous oxide	67
	2.1. Sampling methods	67
	2.1.1. Chamber methods	67
	2.1.2. Micrometeorological methods	67
3.	Analytical techniques currently used	68
	3.1. Chromatographic techniques	68
	3.2. Optical techniques	69
	3.2.1. Fourier-transform infrared spectroscopy	69
	3.2.2. Infrared laser-absorption spectroscopy	69
	3.2.3. Multipass cells	70
	3.2.4. High-finesse optical cavities	70
	3.2.5. Photoacoustic (PA) trace-gas detection	70
	3.3. Amperometric methods	71
4.	New methods under development	71
	4.1. Amperometric biosensors	71
	4.2. Optical fibers	71
	4.3. Modified-SnO ₂ surfaces	71
5.	Conclusions.	71
	Acknowledgements	71
	References	71

* Corresponding author. Tel.: +61 2 62464104; Fax: +61 2 62464000

E-mail address: trevor.rapson@csiro.au (T.D. Rapson).

Abbreviations: ECD, Electron-capture detector; QCL, Quantum-cascade laser; CRDS, Cavity ring-down spectroscopy; OA-ICOS, Off-axis integrated cavity-output spectroscopy; IRMS, Isotope-ratio mass spectrometry; PAS, Photoacoustic spectroscopy.

^{*} This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{0165-9936/\$ -} see front matter @ 2013 The Authors. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.trac.2013.11.004

1. Introduction

Nitrous oxide (N₂O) is a powerful greenhouse gas. The global warming potential (GWP) of N₂O is 298 times greater than CO₂ over a 100-year time horizon, and N₂O is estimated to contribute about 6% of the global warming effect due to greenhouse gases [1,2] In the stratosphere, N₂O is oxidized to form NO and NO₂. These nitrogen oxides catalyze the destruction of ozone [3], making N₂O the single most important ozone-depleting emission in the twenty-first century [4].

 N_2O is an intermediate in both bacterial nitrification and denitrification pathways, so N_2O emissions are mainly due to bacterial transformations of nitrogen in soils and oceans (see Figs. 1 and 2). Since the industrial revolution (1750 AD), N_2O levels have increased by almost 20%, from 270 ppb to 320 ppb. This increase is attributed to human activities, in particular, the use of synthetic and organic fertilizers. Other important sources of N_2O emissions are human sewage and the burning of biomass and biofuels [5–7].

Under the Kyoto Protocol, signatory countries are required to complete an annual national greenhouse-gas inventory, which, for completeness, should include N₂O. Calculating N₂O emissions is a complicated task. In addition to N₂O emissions from agriculture, there are indirect emissions, such as those caused by leaching of nitrogen from agricultural fields to aquatic systems, which increase N₂O emissions from rivers and estuaries [8,9]. Furthermore, natural systems can act as important sources and sinks of N₂O [10]. The Intergovernmental Panel on Climate Change (IPCC) has set out guidelines for developing national greenhouse-gas inventories [11], whereby N₂O emissions are determined from models that link emissions to activities, such as fertilizer use. Underlying the models are emission factors, which are determined from experimental data. The accuracy of the models depends on the quality of the experimental data on which they are based [10,12].

Measuring N_2O emissions experimentally is not a trivial matter. Two main challenges are encountered when trying to measure N_2O emissions:

- first, the low atmospheric concentrations of N₂O (320 ppb), roughly a thousand times lower than CO₂, and these low concentrations are outside the detection range of many analytical techniques; and,
- second, N_2O fluxes are episodic and demonstrate very large temporal and spatial variations, due to the multiple processes that both produce and consume N_2O . The rates of these

processes are affected by a wide range of factors, such as temperature, soil pH, moisture and soil organic carbon. While capturing flux events is challenging, it is critical to allow for accurate quantification of ecosystem-wide emissions [13,14].

A large amount of research is being carried out on N_2O fluxes from soils, wastewater and aquatic systems. This research aims not only to improve greenhouse-gas accounting, but also to understand the complex processes contributing to N_2O fluxes, which could be used to inform mitigation strategies.

Not only has the quantity of N₂O emissions been measured, but isotopic studies have also been performed, and have provided important information about the biogeochemical cycle of N₂O [15–19]. Although ¹⁴N¹⁶O is the most abundant species (99%), both the ratio of ¹⁵N/¹⁴N and the position of ¹⁵N (either ¹⁵N¹⁴N¹⁶O or ¹⁴N¹⁵N¹⁶O) provide useful information [20–23]. Photolytic decomposition of N₂–O in the stratosphere, the major sink of N₂O, leads to enrichment of the heavier isotopes of N₂O (both ¹⁵N and ¹⁸O) [24,25]. Microbial sources generally emit N₂O that is depleted in ¹⁵N and ¹⁸O, while site preference (¹⁵N¹⁴N¹⁶O or ¹⁴N¹⁵O¹⁶O) can indicated whether N₂O is produced by nitrifying or denitrifying bacteria (see Fig. 2) [20,22,26].

To assist these studies, there is a strong need for better analytical methods and cost-effective ways of measuring N₂O over wide areas and long time-frames. The World Meteorological Organization Global Atmosphere Watch (WMO-GAW) guidelines for the measurement of N₂O recommend accuracy and precision of less

Fig. 2. Microbial pathways of N_2O production. (a) N_2O production through nitrification *via* hydroxylamine. (b) N_2O production through nitrifier denitrification. Figure modified from [19].

Fig. 1. Global sources of N₂O for the 1990s. Data for the graph was obtained from [5].

Download English Version:

https://daneshyari.com/en/article/7690341

Download Persian Version:

https://daneshyari.com/article/7690341

Daneshyari.com