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1. Introduction

Nitrous oxide (N,0) is a powerful greenhouse gas. The global
warming potential (GWP) of N,0 is 298 times greater than CO,
over a 100-year time horizon, and N,O is estimated to contribute
about 6% of the global warming effect due to greenhouse gases
[1,2] In the stratosphere, N,O is oxidized to form NO and NO,.
These nitrogen oxides catalyze the destruction of ozone [3], mak-
ing N,O the single most important ozone-depleting emission in
the twenty-first century [4].

N,O is an intermediate in both bacterial nitrification and deni-
trification pathways, so N,O emissions are mainly due to bacterial
transformations of nitrogen in soils and oceans (see Figs. 1 and 2).
Since the industrial revolution (1750 AD), N,O levels have in-
creased by almost 20%, from 270 ppb to 320 ppb. This increase is
attributed to human activities, in particular, the use of synthetic
and organic fertilizers. Other important sources of N,O emissions
are human sewage and the burning of biomass and biofuels [5-7].

Under the Kyoto Protocol, signatory countries are required to
complete an annual national greenhouse-gas inventory, which,
for completeness, should include N,O. Calculating N,O emissions
is a complicated task. In addition to N,O emissions from agricul-
ture, there are indirect emissions, such as those caused by leaching
of nitrogen from agricultural fields to aquatic systems, which in-
crease N,O emissions from rivers and estuaries [8,9]. Furthermore,
natural systems can act as important sources and sinks of N,O [10].
The Intergovernmental Panel on Climate Change (IPCC) has set out
guidelines for developing national greenhouse-gas inventories
[11], whereby N,O emissions are determined from models that link
emissions to activities, such as fertilizer use. Underlying the mod-
els are emission factors, which are determined from experimental
data. The accuracy of the models depends on the quality of the
experimental data on which they are based [10,12].

Measuring N,O emissions experimentally is not a trivial matter.
Two main challenges are encountered when trying to measure N,O
emissions:

o first, the low atmospheric concentrations of N,O (320 ppb),
roughly a thousand times lower than CO,, and these low con-
centrations are outside the detection range of many analytical
techniques; and,

e second, N,O fluxes are episodic and demonstrate very large
temporal and spatial variations, due to the multiple processes
that both produce and consume N,O. The rates of these
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processes are affected by a wide range of factors, such as tem-
perature, soil pH, moisture and soil organic carbon. While cap-
turing flux events is challenging, it is critical to allow for
accurate quantification of ecosystem-wide emissions [13,14].

A large amount of research is being carried out on N,O fluxes
from soils, wastewater and aquatic systems. This research aims
not only to improve greenhouse-gas accounting, but also to under-
stand the complex processes contributing to N,O fluxes, which
could be used to inform mitigation strategies.

Not only has the quantity of N,O emissions been measured, but
isotopic studies have also been performed, and have provided
important information about the biogeochemical cycle of N,O
[15-19]. Although *N'N'®0 is the most abundant species (99%),
both the ratio of 'N/!N and the position of >N (either
ISNN'60 or “N'>N'60) provide useful information [20-23]. Pho-
tolytic decomposition of N,-O in the stratosphere, the major sink
of N,O, leads to enrichment of the heavier isotopes of N,O (both
15N and '®0) [24,25]. Microbial sources generally emit N,O that
is depleted in '°N and '®0, while site preference (">N'N'®0 or
14NT5N'60) can indicated whether N,O is produced by nitrifying
or denitrifying bacteria (see Fig. 2) [20,22,26].

To assist these studies, there is a strong need for better analyt-
ical methods and cost-effective ways of measuring N,O over wide
areas and long time-frames. The World Meteorological Organiza-
tion Global Atmosphere Watch (WMO-GAW) guidelines for the
measurement of N,O recommend accuracy and precision of less
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Fig. 2. Microbial pathways of N,O production. (a) N,O production through
nitrification via hydroxylamine. (b) N>O production through nitrifier denitrification.
Figure modified from [19].
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Fig. 1. Global sources of N,O for the 1990s. Data for the graph was obtained from [5].
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