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a b s t r a c t

We study the superposition of 1D and 2D shallow-water equations with non-flat topographies, in the
context of river-flood modeling. Since we superpose both models in the bi-dimensional areas, we focus
on the definition of the coupling term required in the 1D equations. Using explicit finite volume schemes,
we propose a definition of the discrete coupling term leading to schemes globally well-balanced (the glo-
bal scheme preserves water at rest whatever if overflowing or not). For both equations (1D and 2D), we
can consider independent finite volume schemes based on well-balanced Roe, HLL, Rusanov or other
scheme, then the resulting global scheme remains well-balanced. We perform a few numerical tests
showing on the one hand the well-balanced property of the resulting global numerical model, on the
other hand the accuracy and robustness of our superposition approach. Therefore, the definition of the
coupling term we present allows to superpose a local 2D model over a 1D main channel model, with
non-flat topographies and mix incoming-outgoing lateral fluxes, using independent grids and finite vol-
ume solvers.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In river hydraulics, operational models are generally based on
the St-Venant equations (1D shallow-water). If overflowing, flood
plain are represented in the 1D model by storage areas, that are de-
fined by using empirical laws and/or terms to be calibrated, see [6]
or e.g. [14]. Obviously, flow dynamic inside the storage areas is not
computed; also the empirical laws can be difficult to calibrate. If
for any reason, the end-user has to model the flow in the flood
plain, a 2D model must be used, see e.g. Fig. A.1. Then, the classical
approach is to decompose the domain, re-define the mesh, then
couple the 1D model (in the non-flooded areas) with 2D models
(in flooded areas) at interfaces, see e.g. [15,13]. Coupling conditions
have to be imposed at interfaces only. An efficient coupling proce-
dure may be a Schwarz-like algorithm. Nevertheless, this approach
presents some drawbacks. It requires to re-define the 1D hydraulic
model (mesh, boundaries, etc.) and very probably the related
topography data. The 1D model (which is potentially a complex
network) must be segmented (decomposed) in order to combine
it with the 2D models. It can be a heavy task.

A superposition approach is proposed in [8,12]. In such an ap-
proach, instead of decomposing the original 1D (network) model,

one superposes the 2D model (so-called ‘‘local zoom model”).
The superposition approach presents some advantages. The origi-
nal 1D model remains intact and the 2D local models can be per-
formed with their own dynamics (typically, time steps and mesh
grids are much smaller for 2D solvers than for 1D solvers). Never-
theless, an accurate definition of the coupling terms between both
models is required. At interfaces, incoming characteristics are still
good conditions, but along the 1D main channel one must intro-
duce a coupling term in the 1D equations (modelling the loss or
gain of mass and momentum). This coupling term has to take into
account the outgoing and incoming fluxes if overflowing. From a
continuous point of view, the coupling source term can be derived
formally from the 3D Navier–Stokes equations, see [12].

Then, next step is to define a stable and well-balanced global
scheme. An important difficulty is to discriminate between the
1D-topography graph Zbð~xÞ and the 2D-topography graph zbðx; yÞ,
since Zb depends on the curvilinear coordinate ~x while zb depends
on the cartesian coordinates ðx; yÞ. In addition for real cases, data
are sparse, uncertain, and the 1D-topography and the 2D-topogra-
phy do not have to respect the same hydrological constraints. If in
addition, one wants to consider different meshes and schemes for
the 1D model and the 2D model, the discretization of the coupling
source term must be such that it leads to a consistent, stable and
well-balanced scheme. This is the problem we address in the pres-
ent study, while focusing on explicit finite volume schemes.
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Let us point out that we present the 1D–2D coupling in the con-
text of river hydraulics, but this could also be apply to any other
flows involving 1D and 2D shallow-water equations with non-flat
topographies.

We consider the possibility of using different finite volume
schemes for the 1D model and the 2D model. In the numerical
analysis presented in next sections, they can be based on different
time-space grids but they must be explicit in time. More precisely,
we consider finite volume methods in conservative form with
source terms (the topography terms and the coupling term). Then,
for both models, we can consider any solver belonging to a whole
family of approximate Riemann solvers. We prove that the result-
ing global scheme is well-balanced in the sense that it preserves
water at rest, with and without overflowing.

We present some numerical results for an academic test case
with a non-constant topography in which there are outgoing and
incoming lateral fluxes. In order to couple the models, we use a
Schwarz coupling algorithm (global in time). This could be done
also by using an optimal control approach as in [8,12]. The numer-
ical results show that after convergence, the coupling source term
W defined in the present study leads to a global solution as accu-
rate as a full 2D solution in case of matching grids, and leads to a
robust and accurate solution if grids are mismatching.

The paper is organized as follows. In Section 2, we present the
two mathematical models. Their discretization using well-bal-
anced finite volume scheme is presented in Section 3. The discret-
ization of the coupling source term in 1D equations is described in
Section 4. We begin with the simplest case (matching grids and 1D
linear axis). Then, we consider the case of 1D curvilinear geometry
with matching grids. Finally, the most general case (curvilinear and
mismatching grids) is considered. We prove in Theorem 1 that the
here introduced discrete source term leads to a global well-bal-
anced scheme, whatever the choice of the well-balanced finite vol-
ume method used for the 1D and 2D models. In Section 5 we
present some numerical experiments to validate the definition of
the discrete source term, and to show the efficiency of the present
superposition approach. We recall briefly in Appendix A the deriva-
tion of the coupling source term in the 1D equations from the 3D
Navier–Stokes equations (we refer to [12] for more details).

2. Mathematical models

2.1. The 1D model with source term

The 1D model is based on St-Venant equations (1D shallow-
water equations). Nevertheless, since our goal is to couple this
1D model to a 2D shallow-water model, we must take into account
transfers through the two lateral boundaries of the main channel. If
we integrate the 3D Navier–Stokes equations over the vertical wet-
ted area, in the presence of lateral transfer terms, we obtain some
source terms in the 1D equations. The derivation of these source
terms is presented in Appendix A. The result is the following. Let
us denote the channel-following coordinates by: ~x. We denote
the unidimensional variables (i.e. depending on ð~x; tÞ only) as fol-
lows: S the wet cross-section, Q the discharge, H the water depth.
And Zb denotes the unidimensional topography (depending on ~x
only). We assume that: the channel width variations are small, u is
nearly constant over the cross-section, and (u;v) does not depend
on z on boundaries b1 and b2. Furthermore, for the sake of simplicity,
we consider rectangular cross-sections only. Hence S ¼ b � H, where
b is the channel width, see Fig. A.3.

The derivation of the 1D shallow-water equations with source
term is presented in Appendix A (replace x by ~x). Under the
assumptions above, the equations are the following:
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where P ¼ gS H
2 is a pressure term. In the right hand side, qgi

repre-
sents the discharge normal to the lateral boundary i of the main
channel, i ¼ 1;2; uti

represents the tangential velocity at lateral
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Fig. A.3. 1D model. (a) Wet cross-section; (b) top view of one 1D cell in the main
channel.

Fig. A.2. Up: definition of the 1D channel in the 2D domain. Down: 1D cross-section
with overflowing.

Fig. A.1. Modeling outline: a global 1D model with superposed local 2D models.
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