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a b s t r a c t

In this work a generalized self-consistent field theory was applied to investigate the elementary exci-
tations of two-dimensional electron gas formed from narrow quantum wells via resonant intersubband
Raman scattering. The developed model considers the existence of equally coupled and degenerated exci-
tations of the electron gas and allows to observe that in extreme resonance regime the plasma oscillations
splits into two contributions: a set of renormalized collective excitations (plasmons) and unrenormal-
ized electronic transitions (single-particle excitations). Our results show that the asymmetries which
appear in the Raman profile of doped narrow quantum wells can be interpreted as the entrance or exit
of resonance of collective modes overlapped with single-particle transitions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The inelastic light scattering is a powerful tool that has been
widely used in the study of the semiconductor materials and it
has become an indispensable technique for the understanding of
fundamental physical processes [1–3]. The investigation of quan-
tized electronic systems as quantum wells, wires and quantum dots
via Raman spectroscopy is quite attractive since it allows to obtain
information concerning many-body effects of interacting particles.

By means of electronic Raman scattering is possible to grasp
the nature of collective excitations in quasi-2D systems which
are known as Charge Density Excitations (CDE) and Spin Den-
sity Excitations (SDE). CDE are plasmonic oscillations arising from
the coupling between charge fluctuations via Coulombian and
exchange-correlation interactions while SDE occurs only when
exchange-correlation effects are present. Both depend on selection
rules that are associated with polarizations of the light [4]. The CDE
is active when the laser energy is resonant with a semiconductor
optical gap and the incoming and outgoing light polarizations are
parallel to each other (polarized spectra). The SDE is active when
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the laser energy is resonant with a semiconductor optical gap and
the incoming and outgoing light polarizations are perpendicular
to each other (depolarized spectra). Nevertheless, when the laser
matches interband transitions energy of the material (extreme res-
onance regime), in addition to the collective excitations, emerges
transitions of the electron gas noninteracting-like known as Single-
Particle Excitations (SPE). It is largely accepted that the observation
of the SPE are related to extreme resonance regime irrespective of
the dimensionality of the electron gas system [4–6], which makes
then a fascinating phenomenon. However, the physics of such tran-
sitions is still not completely understood [7]. On the other hand, an
approach developed in previous works has shown in a complete and
well-founded way that the SPE resides, in fact, in unrenormalized
collective excitations [8–11]. In addition, in Ref. [11], an analogy is
presented between resonant electronic Raman scattering and the
forced coupled harmonic oscillators problem, as well as, a corre-
spondence with the formation of the superconducting state in BCS
theory of normal metals.

This article aims to provide a theoretical interpretation on the
behavior of the electronic Raman results found in Ref. [1], where
for GaAs narrow quantum wells formed from the semiconductor
sequence AlGaAs/AlAs/GaAs/AlAs/ AlGaAs, the Raman spectra are
more influenced by SPE. Two wells were studied: one with 10 nm
and the other with 17 nm GaAs width. For the 10 nm wide GaAs
single quantum well (extreme case) only the SPE are seen in Raman
spectra because collective excitations (CDE and SDE) are too small
and overlapped by the SPE peak. A qualitative comparison between

http://dx.doi.org/10.1016/j.vibspec.2016.09.008
0924-2031/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.vibspec.2016.09.008
http://www.sciencedirect.com/science/journal/09242031
http://www.elsevier.com/locate/vibspec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vibspec.2016.09.008&domain=pdf
mailto:leonarde_@yahoo.com.br
mailto:virgilio@fisica.ufjf.br
dx.doi.org/10.1016/j.vibspec.2016.09.008


194 L.N. Rodrigues et al. / Vibrational Spectroscopy 87 (2016) 193–198

theoretical and experimental data is performed which allows to
interpret the asymmetries of Raman profile lines as the entrance
or exit of resonance of collective modes overlapped with single-
particle transitions.

2. Generalized self-consistent field theory

To calculate the response of a nonuniform electron gas submit-
ted to the action of an external potential we use a formalism based
on time dependent local density approximation (TDLDA) [12,13]. The
fundamental idea of the self-consistent field theory approxima-
tion is to assume that the system of many-electrons responds to
an effective field as a system of independent particles.1 Therefore,
an external potential acting on the system induces a charge density
fluctuation as response to the applied field. This induced fluctuation
produces an induced potential. This new potential acts on the sys-
tem again producing a new total potential (effective potential, Veff),
and so on ad infinitum. In other words, this process is self-consistent
and can be represented by Eq. (1),

Veff (r, t) = Vext(r, t) + Vind(r, t), (1)

where Vext(r, t) is the external potential (laser). The induced poten-
tial is described by [8,12,14]

Vind(r, t) =
∫ [

e2

εl(ω)|r − r′| + Uexc(r)ı(r − r′)

]
ın(r′, t)dr′. (2)

The first term in Eq. (2) corresponds to the direct term
(Coulomb interactions), the second include many-body effects
(exchange and correlation).εl(ω) = ε∞(ω2 −ω2

LO)/(ω2 −ω2
TO) is the

GaAs frequency-dependent lattice dielectric function that con-
tains the bulk frequencies of the longitudinal (ωLO) and transverse
(ωTO) optical phonons (the phonon lifetime was neglected) with
dielectric constant ε∞. The induced density fluctuation in the time-
coordinate representation is given by,

ın(r, t) = 〈 ̂†(r, t) ̂(r, t)〉t =
∑
˛ˇ

 ∗
˛(r) ˇ(r)〈ĉ†˛ĉˇ〉

t
, (3)

where  ̂† and  ̂ are field operators. The coefficients and ĉ†˛(ĉˇ)
in Eq. (3) are wave functions and fermion creation (destruction)
operators of single-particle conduction subband states. Taking the
Fourier transform of Eq. (1) and solving the Heisenberg equation of
motion for expectation values 〈ĉ†˛ĉˇ〉

t
in Eq. (3) [15,16],

Veff
ji

= Vextji +
∑
mn

Cij,mn�
0
mnV

eff
mn, (4)

where

Cij,mn = 2�e2

Akzεl(ω)

∫ ∫
dzdz′�ij(z′)e−kz |z−z

′ |�mn(z)

+ 1
A

∫
dz[−UCDEexc (z)]�mn(z) (5)

and

�0
mn =

∑
k,�

fm(k) − fn(k + q)
�m(k) − �n(k + q) + �ω. (6)

Cij,mn is the matrix element of the Fourier transform which cou-
ples the charge density fluctuations between the subbands ij and
mn. The first term in Eq. (5) represents contributions of the direct
Coulombian interactions (Hartree term) and the second represents
the exchange-correlation effects for the CDE. For the SDE, only the

1 Calculations developed here follow the approach used in Refs. [8,11].

second term on the right side in Eq. (5) should be considered. The
explicit expressions for the functional derivatives UCDEexc and USDEexc
are obtained from [17]. In Eq. (5), A is the area and the wave func-
tions that describe the confinement in the z direction (written in
terms of the envelope wave functions) are �ij(z′) = �i(z′)�j(z′). �0

mn
is the response function of the noninteracting electronic system,
fm(n)(k) is the Fermi–Dirac distribution and �(k) is the dispersion
relation in the parabolic band approximation and k, q ∈ kxky. In this
work, we considered only intersubband transitions where there is
no lateral momentum transferred by light (q → 0). In this way, we
can rewrite Eq. (6) as

	0
nm ≡ lim

q→ 0

T → 0 K

(�0
mn +�0

nm) = 2Nnm�ωnm
�2(ω2 −ω2

nm)
. (7)

Eq. (7) takes into account both upward and downward transitions.
�ωnm = (�n −�m) is the bare electronic transition energy, �0

mm =
0 and Nnm ≡

∑
k,� fm(k) − fn(k) =

∑
k,�1 is the number of electrons

that contributed to each transition m → n. The energy transferred
to the electron system by the light is �ω =� (ωL −ωS) where �ωL

and �ωS corresponds to the incident (laser) and scattered photon
energies.

The idea employed in Ref. [8] is to map the inelastic light scat-
tering of an electron gas into a problem of a set of forced damped
harmonic oscillators. The damping of the transitions (i.e., scatter-
ing by impurities) is considered when we replace ω→ω + i
 . Thus,
�

2(ω + i
)2 
 (�ω)2 + i��ω, where �≡ 2�
 is the damping related
to each transition. Therefore, we associate a harmonic coordinate
to each transition pair defined as

xji ≡
√

2Nji�ωji

�2(ω2 −ω2
ji

+ i�ji�ω)
Veff
ji
. (8)

In this way, Eq. (4) can be rewritten in the following way,

Veff
ji

= Vextji +
∑
mn

n > m

Cij,mn	
0
nmV

eff
nm

�
2(ω2 + i�ji�ω)xji =

√
2Nji�ωjiV

ext
ji +

∑
mn

Uij,mn(ω)xnm, (9)

where

Uij,mn(ω) ≡ Cij,mn(ω)
√

4NjiNnm�ωji�ωnm + (�ωji)
2ıij,mn. (10)

From Eqs. (5) and (10) one can see that the matrix U is real and
symmetric. Therefore, its eigenvectors constitute a base which can
be used to solve the equation of x via LU decomposition.

The expression for the inelastic light scattering which connects
experiment and theory is the differential scattering cross section
[18] given by

∂2
�

∂
∂ω
= r20

(
ωS
ωL

)
S(ω), (11)

where r20 = e2/mc2 is the classical electron radius and

S(ω) =
〈∑

F

|〈F |M̂eff |I〉|2ı(EF − EI − �ω)

〉
I

, (12)

is known as dynamic structure factor. M̂eff is the effective operator
for a transition between the many-body state |I〉 with energy EI to
the final state |F〉 with energy EF and 〈 〉I an average over the initial
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