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a b s t r a c t

In this paper, we propose a new boundary treatment with almost second-order accuracy that does not
require neighboring lattice information. In order to achieve improved accuracy for the boundary lattices,
we used adaptive relaxation times reflecting boundary length scales that were unequal to the length scale
of the internal fluid region lattices. Since the boundary treatment using adaptive relaxation times at the
boundaries was formulated without information about the neighboring lattices, it could be easily applied
to complex geometries. Numerical results using the proposed boundary treatment showed almost sec-
ond-order accuracy for two-dimensional and three-dimensional problems without using information
from neighboring lattices, unlike interpolation or extrapolation methods.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) is a computational meth-
od based on the dynamics of particles used for solving engineering
problems governed by partial differential equations. The LBM has
already achieved great success in computationally simulating fluid
flow, and has applied in diverse problems with complex geome-
tries [18,28]. Beyond the fluid dynamics solver, Qian et al. [11] de-
rived the general reaction–diffusion equations for the LBM. Jawerth
et al. [21] presented two lattice Boltzmann models for nonlinear
anisotropic diffusion of images. Zhao [40] used the LBM to solve
the Laplace and Poisson equations for the diffusion process in im-
age processing. Yan [25] proposed the LBM for the wave equation.
Chopard and Luthi modified the LBM to simulate wave propagation
in complex environments and fracture processes [20]. Wang et al.
[36–39,45] used the LBM to solve the energy transport equation
with complex multiphase porous geometries, and established a
method to predict material properties such as the effective thermal
conductivities of porous media. Li and Hi [43] combined the LBM
with the finite difference method to simulate incompressible,
resistive magnetohydrodynamic flows. Guo et al. [46] and Verhae-
ghe et al. [47] improved LBM to apply to microflows considering
slip boundary and large Knudsen number.

As applications for the LBM expanded, the LBM has been devel-
oped to increase the accuracy and stability. The multiple-relaxa-
tion-time (MRT) LBM was developed by many researchers
[7,23,26,29,30] to overcome drawbacks of the simple LBM that is

known as the lattice Bhatnagar–Gross–Krook (LBGK) scheme
[1,3,5]. Lallemand and Luo [23] showed an improvement in numer-
ical stability with the use of the MRT LBM. d’Humières et al. [29]
confirmed the stability improvement in three-dimensional lid-dri-
ven cavity flow using the MRT LBM. Diverse boundary treatments
were also developed. Traditionally, the LBM used a bounce-back
treatment for the wall boundary condition. The bounce-back
boundary treatment requires that the boundaries should be
located midway through the last fluid node and the first outside
node for second-order accuracy [8,9]. Otherwise, the bounce-back
boundary treatment gives only first-order accuracy at the bound-
aries. This constraint made the bounce-back boundary treatment
insufficient for complex boundaries. To overcome the limits of
this boundary treatment, many modified boundary treatments
have been applied to complex boundaries. Some used an extrapola-
tion and/or interpolation (link-type) boundary treatment
[13,22,24,27,31,33,34]. Guo and Zheng [31] used the extrapolation
of non-equilibrium distributions on a curved boundary and
achieved good second-order accuracy. Bouzidi et al. [27] estab-
lished a well-organized interpolation for the unknown distribution
of a curved boundary and also achieved second-order accuracy. Lal-
lemand and Luo [33] expanded on the work of Bouzidi et al. to mov-
ing boundaries. Ginzburg et al. [32,41,42] suggested general
theoretical tools for studying the existing link-type boundary treat-
ments and proposed multireflection boundary treatment with third
order kinetic accuracy. To enhance the stability of the mass-conser-
vation equation, they also used two eigenvalues with eigenvectors
for the collision matrix. These kinds of boundary treatments are
simple and easy to use in most cases. However, these interpolation
and/or extrapolation boundary treatments require additional
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information from the neighboring lattices. Especially in corner
boundaries, there is a lack of neighboring lattices, so the boundary
treatments may need some assumptions and/or precise treatments
according to each situation [41]. Additionally, these interpolation
and/or extrapolation boundary treatments can show irregular
velocity profile by the difference of the dissipation due to the inter-
polation or extrapolation around the boundary [24]. Other studies
have proposed modified bounce-back boundary treatments, such
as the half-away bounce-back method [6] and the non-equilibrium
bounce-back method [16]. The half-away bounce-back boundary
treatment does not accurately reflect complex geometries because
it uses stair-step boundaries. In addition, a hydrodynamic approach
[10] was proposed, but applied only to confined cases. Filippova and
Hanel [19] proposed a grid refinement scheme around boundaries
to enhance the local resolution for better accuracy and higher Rey-
nolds number. They adopted a hierarchical refinement concept by
introducing different relaxation times between the coarse and fine
grids using Chapman–Enskog expansion and Taylor series of Knud-
sen number. Rohde et al. [44] proposed volumetric techniques for
grid refinement and boundary conditions to be applied to the flow
around a sedimenting sphere in a tank. Their numerical results
showed good agreement with experimental results. These grid
refinement schemes locally added lattice points near the bound-
aries to enhance accuracy and resolution. However, the boundary
condition for lattice points adjacent to boundaries were applied
by using the conventional boundary treatments and have similar
problems. Guo et al. [46] investigated the physical symmetry, spa-
tial accuracy, and relaxation time for microgas flows with LBM.
They issued the wall effect on the relaxation time. Guo et al. [46]
and Verhaeghe et al. [47] showed that diverse approaches on
relaxation time are required to solve accurately the Dirichlet
boundary conditions.

In this paper, we propose a new boundary treatment with al-
most second-order accuracy at the boundaries even without using
information from neighboring lattices. The proposed treatment do
not add more lattice points near the boundary. The proposed
boundary treatment modifies only the collision scheme with adap-
tive relaxation times that reflect the different length scales in the
boundary lattices. Our boundary treatment shows stable conver-
gence regardless of the boundary shape. We will demonstrate the
method’s stability and accuracy with various numerical results
that we compare with exact solutions and numerical results having
second-order accuracy.

2. Lattice Boltzmann method (LBM) with single relaxation time

A popular kinetic model of LBM is the BGK model with a single
relaxation time [1,3,5] as follows:

@f
@t
þ~n � rf ¼ �1

k
f � f ð0Þ
� �

; ð1Þ

where f ð0Þ is the equilibrium distribution function (Maxwell–Boltz-
mann distribution function), f ð~x;~n; tÞ is the particle velocity distri-
bution function, ~x is the spatial position vector, ~n is the particle
velocity vector, t is the time, and k is the relaxation time. To solve
the particle velocity distribution numerically, Eq. (1) is discretized
by the discrete-velocity set~ea [14,15].
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where fað~x; tÞ is the distribution function with the ath discrete veloc-
ity ~ea and f ðeqÞ

a is the corresponding equilibrium distribution func-
tion in the discrete velocity space.

Eq. (2) is discretized with the time step dt and space step
dx ¼~eadt into

fað~xi þ~eadt; t þ dtÞ � fað~xi; tÞ ¼ �
1
s

fað~xi; tÞ � f ðeqÞ
a ð~xi; tÞ

� �
;

fað~xi þ~eadt; t þ dtÞ ¼ fað~xi; tÞ þXað~xi; tÞ; ð3Þ

where s ¼ k
dt

� �
is the non-dimensionalized relaxation time, xi is the

point in the discretized physical space, and Xa ¼ � 1
s fa � f ðeqÞ

a

� �� �
is the collision term. Eq. (3) is usually solved with the following
two steps.

(1) Collision step

~f að~xi; t þ dtÞ ¼ fað~xi; tÞ �
1
s

fað~xi; tÞ � f ðeqÞ
a ð~xi; tÞ

� �
: ð4Þ

(2) Streaming step

fað~xi þ~eadt; t þ dtÞ ¼ ~f að~xi; t þ dtÞ; ð5Þ

where ~f a is the post-collision state of the distribution function.
These two steps are localized and simple to implement. We used
a nine-velocity set model for two-dimensional problems (D2Q9)
and a 19-velocity set model for three-dimensional problems
(D3Q19) [5]. The equilibrium distributions for D2Q9 and D3Q19
have similar forms.

f ðeqÞ
a ¼ qwa 1þ 3

c2 ð~ea �~uÞ þ
9

2c4 ð~ea �~uÞ2 �
3

2c2 ð~u �~uÞ
� 	

; ð6Þ

where~ea is a discrete-velocity set. The term~ea is nine-velocity set in
D2Q9: ~ea ¼ 0 for a ¼ 0; ~ea ¼ cð�1;0Þ for a ¼ 1;2; ~ea ¼ cð0;�1Þ for
a ¼ 3;4; ~ea ¼ cð�1;�1Þ for a ¼ 5;6;7;8, where c ¼ dx

dt

� �
is the lattice

speed, dx is the lattice constant, dt is the time step, and wa is a
weighting factor as follows: wa ¼ 4=9 for a ¼ 0; wa ¼ 1=9 for
a ¼ 1;2;3;4; wa ¼ 1=36 for a ¼ 5;6;7;8. The term~ea is 19-velocity
set in D3Q19: ~ea ¼ 0 for a ¼ 0;~ea ¼ cð�1;0;0Þ for a ¼ 1;2;~ea ¼
cð0;�1;0Þ for a ¼ 3;4;~ea ¼ cð0;0;�1Þ for a ¼ 5;6; ~ea ¼ cð�1;
�1;0Þ for a ¼ 7;8;9;10; ~ea ¼ cð�1;0;�1Þ for a ¼ 11;12;13;14;
~ea ¼ cð0;�1;�1Þ for a ¼ 15;16;17;18, and wa is a weighting factor
as follows: wa ¼ 1=3 for a ¼ 0; wa ¼ 1=18 for a ¼ 1;2; . . . ;6; wa ¼
1=36 for a ¼ 7;8; . . . ;18. The formations of a lattice for the D2Q9
and D3D9 are depicted in Fig. 1.

In addition, there are diverse forms of the equilibrium distribu-
tion depending on the discrete-velocity sets. The physical proper-
ties, such as density and momentum, are determined from the
distribution function used as a primary variable in the LBM. The

density is evaluated by q ¼
Pr

a¼0fa ¼
Pr

a¼0f ðeqÞ
a , the specific

momentum q~u ¼
Pr

a¼1~eafa ¼
Pr

a¼1~eaf ðeqÞ
a , the pressure p ¼ qc2

s ¼
q c2

3 , the viscosity m ¼ s� 1
2

� �
c2

s dt, and the speed of sound cs ¼ cffiffi
3
p .

3. Boundary condition for a curved wall

The half-away bounce-back boundary condition is easy to
implement and commonly used. This boundary condition can be
interpreted based on the finite cell concept, as shown in Fig. 2.

All cells have the same size, and the lattice points are located at
the center of each cell. The size of the cell near a wall is the same as
one in the inner fluid region. With this constraint on cell size, the
half-away bounce-back boundary condition can maintain second-
order accuracy [8], but the wall geometries cannot be accurately
reflected with a uniform cell size. In order to calculate complex
wall geometries, we need to increase the number of lattice points
and put significant limits on the geometries.

A simple geometry with uneven cell size at the boundary is de-
picted in Fig. 3. It is commonly accepted that non-uniform cell
sizes at the boundary provide first-order accuracy when using
the typical half-away bounce-back treatment.
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