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a  b  s  t  r  a  c  t

Membrane  inclusion  interactions  are  studied  within  the  scope  of  continuum  theory.  We  show  that  the
free energy  functional  for the  membrane  thickness  can  be  rewritten  as a constant  times  a  dimension-
less  integral.  For  cylindrical  inclusions,  the  resulting  differential  equation  gives  a  thickness  profile  that
depends  on  the  radius  of  the  cylinder  and  one  single  lipid  property,  a correlation  length  that  is  determined
by  the  ratio  of  the  thickness  compressibility  and bending  moduli.  The  solutions  decay  in a non-monotonic
fashion  with  one  single  observable  minimum.  A  solution  for  planar  geometry  may  either  be  explicitly
constructed  or  obtained  by  letting  the  radius  of  the  cylinder  go  to  infinity.  In  dimensionless  units the
initial  derivative  of  the  thickness  profile  is  universal  and  equal  to  −1/

√
2.  In  physical  units,  the  derivative

depends  on  the  size  of  the  hydrophobic  mismatch  as  well  as  the  membrane  correlation  length  and  will
usually  be  fairly  small  but  clearly  non-zero.  The  line  tension  between  the  protein  inclusion  and  a  fluid
phase  membrane  will depend  on  the  hydrophobic  mismatch  and  be  of  the  order  of  10  pN  (larger  for  the
gel  phase).  This  results  in  free  energy  costs  for the  inclusion  that  will  be up  to  tens  of  kJ/mol  (in  the  fluid
phase).

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

A membrane protein with hydrophobic thickness that is differ-
ent from the surrounding lipid bilayer will induce a strain upon
the lipids. This was noticed and formulated in the mattress model
(Mouritsen and Bloom, 1984). Aranda-Espinoza et al. (1996) have
showed that an analytical solution to the inclusion problem exists
and West et al. (2009) have employed this theory as well as Landau-
de Gennes theory to analyze results from recent coarse grained
simulations (West et al., 2009). Also an extended theory based on
Aranda-Espinoza et al. (1996),  that includes all known elastic terms
of the membrane and capture thermal fluctuations of the bilayer
fairly accurate, has been proposed by Brannigan and Brown (2006).

With the advance of computer simulation methods this can be
probed by calculating the shape and extension of the perturbation
upon the surrounding bilayer. This has been reported by several
authors (Johansson and Edholm, 1987; Sperotto and Mouritsen,
1991; Venturoli et al., 2005; Cordomi and Perez, 2007). A per-
turbation that extends about 1–2 nm from the protein has been
observed in these cases. This perturbation has often been fitted to an
exponential function which usually has been successful within the
statistical accuracy of the simulations. Cordomi and Perez (2007)
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observes, however in one case that the decay might be better
described as a damped oscillation.

For hydrophobic inclusions with heights much larger than the
equilibrium thickness of the membrane one also needs to consider
a tilt scenario where the hydrophobic mismatch drives a rotation of
the inclusion. This effect has been observed in simulation studies of
protein membrane interactions (Kim and Im, 2010). For large mis-
matches, the exposure of hydrophobic matter to water may also
be an alternative. This will be discussed later in the present arti-
cle. For the moment, we just note that a hydrophobic mismatch of
1 nm would by exposing hydrophobic area to water give rise to a
line tension of 50 pN corresponding to a free energy of 200 kJ/mol
for a cylindrical protein with radius 1 nm.  We  will here show that
these number can be substantially reduced by deforming the mem-
brane instead of exposing hydrophobic area. Finally, effects that go
beyond continuum theory like hydrogen bonding may  change the
suggested picture.

We will here show that a damped oscillation, not a pure expo-
nential decay is the outcome of a simple continuum model for the
membrane. Since our assumptions about the membrane inclusion
is different compared to previous work (Aranda-Espinoza et al.,
1996; Brannigan and Brown, 2006) we  also show that the inclusion
problem can be formulated as a variational problem for a dimen-
sionless integral. Free energies and line tension are also derived
from the model.

The free energy cost for introducing the inclusion into the
bilayer may  in a continuum approximation be written (Lindahl and
Edholm, 2000) as an integral over the spatially varying free energy
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cost to change the membrane thickness in order to adapt the mem-
brane to the protein. This may  be written as an integral over the
first non-vanishing terms of an expansion in bilayer thickness and
its derivatives

F[t] = 1
2

∫ ∫
[ke|t − t0|2 + � |∇t|2 + kd|∇2t|2]dxdy. (1)

Here t(x, y) is the bilayer thickness at the point (x, y) and t0 the
preferred equilibrium thickness of the membrane. The first term,
describes the energetic cost to deviate from this preferred thick-
ness. The second term is a surface tension term, which describes
the cost of free energy to change the surface area of the system
due to a spatially varying thickness. The coefficient � is the surface
tension (coefficient), that will be zero in a system which is free to
adjust its area and not subject to strain. The third term describes the
cost of free energy to have a curvature (non-linear variation) of the
bilayer thickness and is similar to the bending energy of the bilayer
but with the requirement that the bending of the two monolayers
is anti-correlated not correlated.

2. Theory

We assume that the inclusion (protein) is free to adjust its cen-
ter in the normal direction of the membrane. It will then minimize
the free energy cost for insertion by aligning its hydrophobic cen-
ter with the membrane mid-plane. We  introduce therefore h = t/2,
h0 = t0/2 and the hydrophobic thickness of the inclusion, 2h1. We
define a lateral membrane length scale

� =
[
kd
ke

]1/4

(2)

and the dimensionless coordinates

� = r/� = (x, y)/� = �(cos ϕ, sin ϕ). (3)

As normalized membrane (half) thickness, we introduce

f (�) = h(�) − h0

h1 − h0
, (4)

which will be 0 for an unstrained bilayer and 1 for a bilayer that
perfectly matches the hydrophobic thickness of the inclusion. In
terms of these variables, Eq. (1) may  be written

F[f (�)] = 2F0

∫ ∫
[f 2 + �0|∇f |2 + |∇2f |2]�d�dϕ, (5)

with the constant in front of the dimensionless integral, F0, being
�1(h1 − h0)2, where �1 ≡

√
kdke is another force constant of the

membrane. It has the dimension of a surface tension (but is of
course not a surface tension). We  have also introduced the dimen-
sionless surface tension �0 = �/�1. Typical values for the membrane
material constants give the correlation length � = 1 −2 nm while
F0 being quadratic in the mismatch will be 6 kJ/mol for a 30%
mismatch. For general shapes of the inclusion, the further analy-
sis becomes complicated. We  therefore specialize to a cylindrical
inclusion with radius R. This gives

F[f (�)] = 4�F0

∫ ∞

R/�

[
f 2 + �0

(
df

d�

)2

+
(

1
�

d

d�
�
d

d�
f
)2

]
�d�. (6)

The function f(�) that describes the shape of the membrane
around the inclusion is found by minimizing this functional sub-
ject to the proper boundary conditions at � = R/�. f(�)obeys the

Euler–Lagrange equation which in this case becomes

�4 d
4f (�)
d�4

+ 2�3 d
3f (�)
d�3

− (1 − �0�
2)

(
�2 d

2f (�)
d�2

− �
df (�)
d�

)

+ �4f (�) = 0. (7)

We now specialize to a bilayer with surface tension zero. The dif-
ferential equation may  then be written as(
d2

d�2
+ 1
�

d

d�
− i

)  (
d2

d�2
+ 1
�

d

d�
+ i

)
f (�) = 0. (8)

This is a homogeneous ordinary differential equation with variable
coefficients that has Bessel functions of imaginary arguments as
solutions. They are J0(�e�i/4) and K0(�e�i/4), where J0 is the ordinary
Bessel function of zeroth order and the K0 is the zeroth order mod-
ified Bessel function of the second kind. Alternatively, the solution
may  be expressed in terms of the four real valued Kelvin functions
(Abramowitz and Stegun, 1968)

f (�) = a0ber0(�) + a1bei0(�) + a2ker0(�) + a3kei0(�). (9)

We seek solutions that are bounded in the membrane region and
have therefore to put the coefficients, a0 and a1 in front of the expo-
nentially increasing ber and bei solutions to zero. The boundary
conditions for f and f′ at � = R/�, determines the other two constants,
a2 and a3. By introducing the boundary conditions as:

f (R/�) =   and f ′(R/�) =  ′, (10)

we may  express the constants as

a0 = 0, a1 = 0, a2 =  k̂′ −  ′k̂
N

, a3 =  ′k −  k′

N
(11)

with k̂ ≡ kei0(R/�) and k ≡ ker 0(R/�) and N ≡ kei′0(R/�)ker0(R/�) −
kei0(R/�)ker′

0(R/�).

2.1. Rigid protein description

For a rigid cylindrical protein, using the dimensionless variables,
we have immediately one of the boundary conditions f(R/�) =   = 1
while the initial derivative f′(R/�) =  ′ has to be determined by min-
imizing the free energy. By inserting the solution from Eq. (9) with
the constants from Eq. (11) (  = 1) into Eq. (6) straightforward cal-
culations give the free energy as a function of the initial derivative,
 ′ as

F( ′)= 4�F0

N2
(( ′k − k′)2+(k̂′ −  ′k̂)2)

∫ ∞

R/�

[
kei20(�) + ker2

0(�)
]
�d�.

(12)

Minimizing the free energy with respect to  ′ gives

 ′ = ker0(R/�)ker′
0(R/�) + kei0(R/�)kei′0(R/�)

ker2
0(R/�) + kei20(R/�)

, (13)

which in the planar limit

R/� → ∞ yields  ′ → − 1√
2
. (14)

The solution is shown as a function of the shifted coordinate
� = � − R/� for different values of the parameter R/� in Fig. 1. The
inset shows the variation of the initial derivative with inverse inclu-
sion radius. The minimal free energy is now obtained obtained by
inserting  ′ from Eq. (13) into Eq. (12) as

F(R/�) = 2
√

2�F0
R

�
(a2

2 + a2
3)

[
ker0(R/�)(ker1(R/�) − kei1(R/�)) + kei0(R/�)(ker1(R/�) + kei1(R/�))

]
≈ F02�

√
2R/�. (15)
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