ARTICLE IN PRESS

Chinese Chemical Letters xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Communication Iron(II) hydrides bearing a tetradentate PSNP ligand

Jianguo Liu^{a,b}, Ailing Zhang^a, Heng Song^a, Qingxiao Tong^{b,*}, Chen-Ho Tung^a, Wenguang Wang^{a,*}

^a School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
^b Department of Chemistry, Shantou University, Shantou 515063, China

ARTICLE INFO

ABSTRACT

Article history: Received 6 August 2017 Received in revised form 28 September 2017 Accepted 28 September 2017 Available online xxx

Keywords: Iron(II) hydride Iron catalysis Tetradentate ligand Hydroboration Aldehydes A new class of iron(II) hydrides based on a tetradentate PSNP ligand were synthesized and fully characterized. All the iron(II) complexes feature a folded PSNP ligand with *cis* reactive sites. The hydrido iron complex [**2**H(NCMe)](BF₄) is capable of catalyzing aldehyde hydroboration by pinacolborane (HBpin) and with extremely high efficiency at room temperature. Aldehydes with various functional groups are compatible.

© 2017 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Iron-based catalysts have drawn much attention because they are earth abundant, cheap, and environment benign [1]. In recent years, iron-based complexes have been explored for a variety of transformations, such as hydrogenation [1,2], hydrosilylation [3– 5], hydroboration [6–8], proton reduction [9], H₂ splitting [10–12], and CO₂ reduction [13]. Significantly, iron hydride species was thought to be the key intermediate in those transformations [14].

Iron complexes with tetradentate ligand have exhibited high reactivity for both stoichiometric and catalytic reactions [15–22]. For example, iron-based complexes with different types of diimino diphosphine ligands, as known as P_2N_2 , have shown high reactivity in asymmetric hydrogenation and asymmetric transfer hydrogenation of ketones and imines [15,16]. The P_2N_2 type ligand is usually coordinated to the Fe center in a planar arrangement which results in two active sites *trans* to one another in an octahedral geometry (Fig. 1). Unlike P_2N_2 , diphosphinodithio ligand (P_2S_2) was found to coordinate to iron center in a folded way that the two active sites are in a *cis-α* disposition. Although the reactivity of iron (II) hydrides in $[(P_2S_2)Fe(H)X]^{n+}$ series (X = CO, MeCN or H⁻) has been investigated [23], they are inactive in catalytic hydroboration or hydrosilylation of organic carbonyl substrates.

By switching one of S atoms in P_2S_2 to N, we describe here a series of well-characterized iron(II) hydride complexes supported by PSNP tetradentate ligands. The combination of soft-hard donating atoms stabilizes such iron(II) hydrides for investigations

* Corresponding authors. E-mail addresses: qxtong@stu.edu.cn (Q. Tong), wwg@sdu.edu.cn (W. Wang). and increases their reactivity for catalysis, *i.e.*, catalytic hydroboration of aldehydes at mild conditions.

The tetradentate ligands **2** and **3** were synthesized from the same precursor, compound **1** (Scheme 1). In the presence of NaH, the reaction of 1,2-NH₂C₆H₄SH with 2-(diphenylphosphino)benzyl chloride [24,25] afforded **1** in 95% yield. Treatment of **1** with 1.1 equiv. of *n*-butyllithium and further reaction with 2-(diphenylphosphino)benzyl chloride produced **2** (yield: 70%). Condensation of **1** and 2-(diphenylphosphino)benzaldehyde in the presence of 10% *p*-toluenesulfonic acid gave ligand **3**. The ³¹P NMR spectrum of **1** exhibits a single peak at δ –17.0 (Fig. S2 in Supporting information), while NH₂ protons are shown as a broad peak at δ 4.08 in ¹H NMR spectrum (Fig. S1 in Supporting information). The ³¹P NMR spectrum of **2** displayed two phosphorus resonances at δ –15.9 and –17.2 (Fig. S4 in Supporting information). By contrast, the ³¹P signals of **3** were observed at δ –14.4 and –16.7 (Fig. S6 in Supporting information).

Treatment of the CH₂Cl₂/MeCN (1:1, v/v) solution of **2** with 1 equiv. of [Fe(H₂O)₆](BF₄)₂ provided bis(acetonitrile) iron complex [**2**(NCMe)₂](BF₄)₂, which was isolated as pink solids in 86% yield (Scheme 2). The ³¹P NMR spectrum shows two doublets peak at δ 37.4 and 29.6 (J_{P-P} = 121.3 Hz) (Fig. S8 in Supporting information). Such a large ³¹P-³¹P coupling constant suggests the two P atoms are *trans* to each other.

By diffusion of diethyl ether into a MeCN solution of $[2(NCMe)_2]$ (BF₄)₂, single crystals suitable for X-ray diffraction were obtained (Fig. 2). Crystallographic analysis $[2(NCMe)_2](BF_4)_2$ reveals that the iron center is coordinated to the folded PSNP ligand and two MeCN molecules, which are in *cis* position. In the *pseudo*-octahedral

https://doi.org/10.1016/j.cclet.2017.09.059

1001-8417/© 2017 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: J. Liu, et al., Iron(II) hydrides bearing a tetradentate PSNP ligand, Chin. Chem. Lett. (2017), https://doi.org/10.1016/j.cclet.2017.09.059

2

ARTICLE IN PRESS

J. Liu et al./Chinese Chemical Letters xxx (2017) xxx-xxx

Fig. 1. Structures of iron(II) complexes with tetradentate ligands.

Scheme 1. Synthetic route of the ligands 2 and 3.

Scheme 2. Synthesis of bis(acetonitrile) iron complex [**2**(NCMe)₂](BF₄)₂.

Fig. 2. Structure (50% thermal ellipsoids) of $[2(NCMe)_2](BF_4)_2$. For clarity, the anion and hydrogen atoms bonded to carbon atoms are omitted. Selected distances (Å) and angles (deg.): Fe(1)-P(1) 2.3398(1), Fe(1)-P(2) 2.3062(1), Fe(1)-S(1) 2.2276(1), Fe(1)-N(1) 2.059(3), Fe(1)-N(2) 1.930(4), Fe(1)-N(3) 1.915(3), N(2)-C(1) 1.135(5), N (3)-C(3) 1.136(5), P(1)-Fe(1)-P(2) 176.42(5), N(1)-Fe(1)-S(1) 86.69(1), N(2)-Fe(1)-N (3) 91.05(1).

 $\begin{array}{l} \textbf{Fig. 4. } Structure (50\% thermal ellipsoids) of \textbf{3A}. For clarity, the anion and hydrogen atoms are omitted. Selected distances (Å) and angles (deg.): Fe(1)-P(1)2.3448(9), Fe(1)-P(2)2.2803(9), Fe(1)-S(1)2.2332(9), Fe(1)-N(1)1.986(3), Fe(1)-N(2)1.934(3), Fe(1)-N(3)1.915(3), N(2)-C(1)1.132(4), N(3)-C(3)1.135(4)P(1)-Fe(1)-P(2)171.90(4), N(1)-Fe(1)-S(1)85.43(8), N(2)-Fe(1)-N(3)91.05(1). \end{array}$

geometry, the S and N atoms in PSNP and another two N atoms in MeCN groups are essentially coplanar. Two P atoms are *trans* to the plane with a P-Fe-P angle of 176.42(5)°, which is in agreement with the observations in the ³¹P NMR spectrum. The structure of [**2** (NCMe)₂](BF₄)₂ is very similar to [Fe(P₂S₂)(NCMe)₂](CF₃SO₃)₂ and Fe(P₂O₂)(CO)₂ complexes described previously [3,23,26].

Complex $[3(NCMe)_2](CF_3SO_3)_2$ was prepared by the reaction of **3** with Fe(CF_3SO_3)_2 in MeCN/CH_2Cl_2 (1:1, v/v) at room temperature. The ³¹P NMR spectrum of $[3(NCMe)_2](CF_3SO_3)_2$ exhibits four sets of doublets, which are assigned as two isomers **3A** and **3B** (Fig. 3). The ratio of **3A/3B** is approximately 4:1. The two doublets at δ 51.2 and 30.3 with J_{P-P} = 132.7 Hz is indicative of two unique *trans* P atoms in **3A** [3,26]. The ³¹P signals for **3B** at δ 49.3 and 37.1 with much

Fig. 3. ³¹P NMR spectrum of [3(NCMe)₂](CF₃SO₃)₂ exhibiting two isomers 3A and 3B.

Please cite this article in press as: J. Liu, et al., Iron(II) hydrides bearing a tetradentate PSNP ligand, Chin. Chem. Lett. (2017), https://doi.org/ 10.1016/j.cclet.2017.09.059 Download English Version:

https://daneshyari.com/en/article/7693429

Download Persian Version:

https://daneshyari.com/article/7693429

Daneshyari.com