ARTICLE IN PRESS

Chinese Chemical Letters xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Communication

Cobalt oxide and carbon modified hematite nanorod arrays for improved photoelectrochemical water splitting

Miao Wang, Meng Wang, Yanming Fu, Shaohua Shen*

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

ARTICLE INFO

Article history: Received 7 November 2017 Received in revised form 23 November 2017 Accepted 27 November 2017 Available online xxx

Keywords:
Hematite nanorods
Surface modification
Photoelectrochemical water splitting
Water oxidation
Electrochemical impedance spectroscopy

ABSTRACT

Given the proper band gap, low cost and good stability, hematite $(\alpha-\text{Fe}_2\text{O}_3)$ has been considered as a promising candidate for photoelectrochemical (PEC) water splitting, however suffers from the sluggish surface water oxidation reaction kinetics. In this study, a simple dip-coating process was used to modify the surface of $\alpha-\text{Fe}_2\text{O}_3$ nanorod arrays with cobalt oxide (CoO_x) and carbon (C) for the improved PEC performance, with a photocurrent density at $1.6\,\text{V}$ (vs. reversible hydrogen electrode, RHE) increased from $0.10\,\text{mA/cm}^2$ for the pristine $\alpha-\text{Fe}_2\text{O}_3$ to $0.37\,\text{mA/cm}^2$ for the CoO_x/C modified $\alpha-\text{Fe}_2\text{O}_3$ nanorods. As revealed by electrochemical analysis, thanks to the synergistic effect of CoO_x and C, the PEC enhancement could be attributed to the enhanced charge transfer ability, decreased surface charge recombination, and accelerated water oxidation reaction kinetics. This study serves as a good example for improving PEC water splitting performance via a simple method.

© 2017 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.

With the increasing global energy demand and environmental problems caused by fossil-fuel combustion, photoelectrochemical (PEC) water splitting has been attracting increasing attentions and considered as a promising route to convert solar energy to clean hydrogen energy [1]. Undoubtedly, in a PEC cell, semiconductor photoelectrodes are the essential components, which absorb solar light and where water redox reactions happen [2]. Since the pioneering study of PEC by Fujishima and Honda [3], booming researches have been conducted for semiconducting photoelectrode materials for solar water splitting, including oxides, sulfides, (oxy)nitrides, and silicon-based photoelectrodes [4–6]. Despite a successful development of PEC performance for these materials, there is not yet a single system that integrates high solar-to-hydrogen (STH) efficiency, durability, and low cost for practical solar-hydrogen production.

Hematite (α -Fe₂O₃), a n-type semiconductor with band gap of \sim 2.1 eV, appears a couple of advantages on PEC water splitting, such as excellent stability, good visible light absorption, non-toxicity, earth-abundant resource and low cost [4]. These merits of α -Fe₂O₃ make it a promising photoelectrode for PEC water splitting. However, as a photoanode, α -Fe₂O₃ still suffers from the low conductivity, high charge combination rate, short hole

diffusion length, and sluggish surface water oxidation kinetics, which greatly limit its PEC performances [7]. In the past decades, several approaches have been implemented to improve PEC performance for water splitting over α -Fe₂O₃ [4,8] by (a) nanostructure design for efficient charge collection, (b) metal ion doping for improved electrical conductivity, (c) heterojunction for charge separation, and (d) surface modification for accelerated surface water oxidation reaction.

Since the aqueous solution growth successfully demonstrated by Vayssieres et al. [9], α -Fe₂O₃ nanorods with efficient charge transfer directed in the one-dimension pathway have been extensively investigated as a typical photoanode for further modifications. Started with α -Fe₂O₃ nanorods, a number of foreign elements (e.g., Cr [10], Ta [11], Nb [12]) could be doped into the nanorods for improved charge transfer ability, different cocatalysts (e.g., Co₃O₄ [13], Co-Pi [14]) and passivation layer (e.g., Al₂O₃ [15], P [16]) have been deposited on the surface to accelerate surface water oxidation reaction and reduce surface charge recombination, which resulted in considerable PEC enhancement. In recent years, there have been more expectations to simultaneously improve the charge transfer ability and the surface reaction kinetics for further enhancement in PEC performances, and of course, significant advances have been achieved. For example, Shen et al. [17] obtained α-Fe₂O₃/Ag_xFe_{2-x}O₃ core/shell nanorod films via ultrasonication treatment of solution-based β -FeOOH nanorods in Ag precursor solution followed by high temperature annealing, which

https://doi.org/10.1016/i.cclet.2017.11.037

1001-8417/© 2017 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Wang, et al., Cobalt oxide and carbon modified hematite nanorod arrays for improved photoelectrochemical water splitting, Chin. Chem. Lett. (2017), https://doi.org/10.1016/j.cclet.2017.11.037

^{*} Corresponding author.

E-mail address: shshen_xjtu@mail.xjtu.edu.cn (S. Shen).

ว

achieved an improved incident photon-to-current efficiency (IPCE) from 2.2% to 8.4% at 400 nm due to increased carrier density and accelerated surface oxidation reaction kinetics. Gong et al. [18] reported a TiO₂/Ti:Fe₂O₃/FeOOH photoanode with an improved photocurrent of approximately 3.1 mA/cm² at 1.23 V (vs. reversible hydrogen electrode, RHE), in which the atomic layer deposition (ALD) grown TiO₂ interlayer suppressed charge recombination at the substrate/hematite interface, the doped Ti⁴⁺ increased the hematite bulk conductivity, and the loaded FeOOH served as an oxygen evolution reaction (OER) cocatalyst to accelerate water oxidation kinetics. Lee et al. [19] modified high-temperature annealed single-crystalline hematite photoanodes by platinum doping to improve the charge transfer characteristics in bulk and Co-Pi cocatalyst to enhance the OER on surface, resulting in a stable and excellent performance of 4.32 mA/cm² PEC water oxidation current at 1.23 V (vs. RHE) under simulated 1-sun irradiation.

Motivated by these advances, in this study $\alpha\text{-Fe}_2\text{O}_3$ nanorods grown on a conductive substrate were modified with cobalt oxide (CoO_x) and carbon (C) by ultrasonic dipping in a cobalt nitrate/glucose aqueous solution. In comparison to the CoO_x or C singly modified counterpart, the CoO_x/C modified $\alpha\text{-Fe}_2\text{O}_3$ nanorods showed further increased PEC activity for water splitting. It was evidenced that the improved carrier transfer ability both in the bulk and on the surface, was synergistically contributed by the coexistence of CoO_x and C on the surface, resulting in the facilitated charge transfer from the bulk to the surface reactions across the photoanode-electrolyte interface and thus the enhanced PEC performance. This study could be a good example of using a simple method to achieve a multi-functional modification for improved PEC performances.

The β -FeOOH films were synthesized through hydrothermal method at 100 °C and transferred to α -Fe₂O₃ films by annealing at 750 °C in air [20], which were finally modified by CoO_x and C. The morphology of CoO_x/C modified α -Fe₂O₃ is shown in Fig. 1a. It could be clearly observed that the nanorod arrays are perpendicular to the fluorine-doped tin oxide (FTO) substrate and have a diameter range from 50 nm to 70 nm, with an average length of about 600 nm as reported before [11]. It is evident that the modification process has no influence on surface morphology of α -Fe₂O₃, as shown in Fig. S1 in Supporting information. Considering the short hole diffusion length (2 – 4 nm) and low electrical conductivity of α -Fe₂O₃ [21,22], this nanorod-array configuration

has been believed to improve the photo-induced charge carrier separation [23]. With the rhombohedral crystal structure, α -Fe₂O₃ has a high degree of anisotropy in the direction of charge carrier mobility, and the conductivity in the (001) basal planes (e.g., in the [110] direction) has been measured up to 4 orders of magnitude higher than that in the perpendicular direction [4,24]. As evidenced by X-ray diffraction (XRD) patterns in Fig. 1b, α -Fe₂O₃ phase exits in all samples and no other phases can be identified, in addition to substrate phase (i.e., FTO). Interestingly, the (110) peak intensity at 35.61° of α -Fe₂O₃ film is much higher than that of (104) peak at 33.15°, while the (110) peak has lower intensity in natural isotropic powder [24]. Transmission electron micro-scope (TEM) image in the inset of Fig. S1a clearly indicates the (001) basal planes vertical to (110) planes formed in [110] growth direction [25]. Together with Fig. 1a and b, it could be evidenced that there is a strong preferential orientation of [110] axis [26] and the relatively high-conductivity (001) planes are parallel to the nanorod lengthwise direction.

UV-visible and Raman spectra were used to explore the possible change in light absorption and structure of CoO_x/C modified α -Fe₂O₃ films, as induced by surface modification. As shown in Fig. 1c, in the region from 300 nm to 800 nm, both α -Fe₂O₃ and CoO_x/C modified α -Fe₂O₃ nanorod films exhibited almost the same optical absorption properties, with absorption onset at around 600 nm. Tauc plots [27] further confirmed that the pristine and CoO_x/C modified α -Fe₂O₃ nanorod films have very close band gaps of 2.08 eV (Fig. S3 in Supporting information), within the reported values ranging from 2.0 eV to 2.1 eV for α -Fe₂O₃ [28]. Raman spectra recorded from 100 cm⁻¹ to 2000 cm⁻¹ (Fig. S2 in Supporting information) demonstrated that there is no obvious difference in the crystal structure for all the nanorod films. All these observations indicated that the CoO_x/C modification has no obvious influence on optical property and crystal structure of α -Fe₂O₃ nanorods.

Given the ignorable difference among surface morphology, crystal structure and optical property, it then comes to be of great importance to figure out the valance states and distribution of CoO_{x} and $\text{C on }\alpha\text{-Fe}_{2}\text{O}_{3}$. Fig. 1d plots the $\text{Co }2\text{p}_{3/2}$ binding energy spectra of CoO_{x} and $\text{C modified }\alpha\text{-Fe}_{2}\text{O}_{3}$ nanorods (taking $\text{Co}_{0.02}$ and $\text{Co}_{0.02}\text{G}_{0.001}$ as examples) from 795 eV to 775 eV. Both profiles can be deconvoluted into three species, in which peaks in range of 790–785 eV represent shake up satellites and others can be

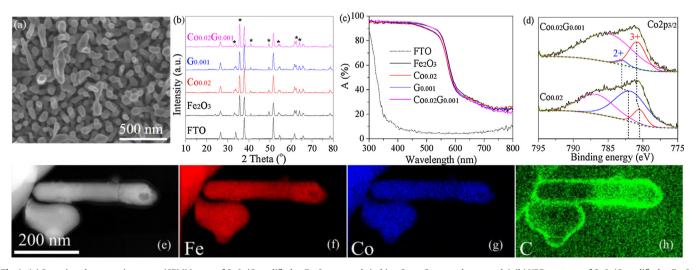


Fig. 1. (a) Scanning electron microscope (SEM) image of COO_x/C modified α-Fe₂O₃ nanorods (taking $Co_{0.02}G_{0.001}$ as the example). (b) XRD patterns of COO_x/C modified α-Fe₂O₃ nanorods, in which star represents XRD peaks of hematite as indexed by PDF card (#33-0664). (c) UV-vis absorption spectra of COO_x/C modified α-Fe₂O₃ nanorods. (d) Co 2p_{3/2} binding energy spectra of COO_x/C modified COO_x/C modified COO

Download English Version:

https://daneshyari.com/en/article/7693530

Download Persian Version:

https://daneshyari.com/article/7693530

<u>Daneshyari.com</u>