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The new generation of post-genomic targets, such as protein–

protein interactions (PPIs), often require new chemotypes not

well represented in current compound libraries. This is one

reason for why traditional high throughput screening (HTS)

approaches are not more successful in delivering medicinal

chemistry starting points for PPIs. In silico screening methods

of an expanded chemical space are then potential alternatives

for developing novel chemical probes to modulate PPIs. In this

review, we report on the state-of-the-art pipelines for virtual

screening, emphasizing prospectively validated methods

capable of addressing the challenge of drugging difficult

targets in the human interactome. Collectively, we show that

optimal strategies for structure based virtual screening vary

depending on receptor structure and degree of flexibility.
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Introduction
Small molecules remain an available and increasingly

diverse source for new and repurposed drug compounds.

As computational resources and algorithm quality have

increased, Computer-Aided Drug Design (CADD) has

become an integral part of the drug discovery process.

With massive compound libraries available [1–3] and the

ever increasing quantity and quality of receptor–ligand

structures [4] and other biological data, more efficient

algorithms and novel techniques will become increasingly

necessary to take advantage of new data. In this review,

we will discuss advances in computational drug discovery,

including increased chemical diversity and virtual screen-

ing technologies.

Current libraries of compounds used for screening are

mostly derived from historical medicinal-chemistry

efforts by pharmaceutical companies. Thus, chemical

phenotypes, or ‘chemotypes’, are dominated by past

drug-discovery research into kinases, G-protein-coupled

receptors, enzymes and other targets traditionally consid-

ered druggable [2,5]. New targets, such as protein–protein

interactions, often require new chemotypes that are

poorly sampled in chemical libraries [6]. Thus, expanding

the diversity of compound libraries is essential in order to

identify new chemical probes that could address the

chemotypes required for new targets [7�].

Virtual small-molecule libraries provide access to an

arbitrarily large and potentially more diverse chemical

space. However, in order to be useful, these libraries must

not only be available or readily synthesizable but also

searchable for compounds likely to bind to the target.

Many valuable technologies both commercial and open

access exist to perform structure-based virtual screening

of commercially available compounds [3,7�,8]. Of note,

the Dömling and Camacho labs have recently developed

breakthrough technologies that allow for drug discovery

collaboration efforts to be performed in real time by

screening millions of compound in seconds [7�]. These

open access tools are not only capable of performing

pharmacophore-based virtual screening of commercially

available compounds [3], but can also screen chemical

libraries specially designed to disrupt protein–protein

interactions (PPIs) [7�]. The latter are a target class that

has proven to be especially difficult to drug using tradi-

tional libraries. These anchor-biased libraries consist of

multicomponent reactions (MCR)-derived compounds.

MCR chemistry (‘one step, one-pot’) [9] is much faster

than traditional multistep sequential synthesis, allowing

for the timely experimental verification or falsification of

virtual compounds [7�].

Critical in virtual screening is the prediction of accurate

poses and the enrichment of active compounds. When

evaluating ranking performance of new virtual screening

methods, high correlation values between the predicted

ranking of compounds by affinity and the actual rankings

are commonly seen when evaluating on known targets

[10]. However, these results don’t stack up when methods

are tested on prospective data sets, even when ample

structural information is available [11�,12��]. In this

review we discuss recent advances in both the software

and strategies used for CADD. Much of these improve-

ments has more to do with tuning the screening strategy
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to the type of receptor structure, flexibility, and cofactors

than the specific software platform or scoring function.

Recent advances in virtual screening
strategies
Pose prediction. Poses are usually predicted based on a two-

step approach: ligand conformer generation followed by

docking and scoring to the target. There are several

efficient software tools used for conformer generation

that can be described as deterministic or stochastic

[13]. Although generally accurate, sampling of ring struc-

tures is still challenging and can sometimes impact the

outcome. Docking programs combine conformer genera-

tion with pose scoring [14]. There are many docking

programs both commercially and freely available, such

as AutoDock Vina [15], Smina [16], Glide [17], and Gold

[18]. Smina, for example, is a fork of AutoDock, which is

not only faster but also facilitates the development of new

scoring functions [16].

Scoring functions often fall into one of three categories:

force-field-based, knowledge-based, or empirical [14].

Force-field-based scoring functions use actual represen-

tations of forces between the receptor and ligand mole-

cules. These are often based on existing molecular

dynamics force field parameters such as the AMBER

force field [19,20]. Knowledge-based scoring functions

use simplified representations of atomic interactions in

order to attempt to reproduce experimental structural

data. Empirical scoring functions are generated by fitting

parameters to experimental structural and affinity data.

There have been continued improvements in scoring

functions for docking applications, notably the develop-

ment of the OPLS3 force field [21�]. This force field fit

new parameters based on a data set consisting of small

molecule and protein–ligand pairs which leads to better

parameterization for analysis of protein–ligand interac-

tions. Another recent development has been the use of

convolutional neural nets (CNNs) [22�,23] which can be

used for scoring. CNNs are a type of neural net architec-

ture where connections between layers are spatially

restricted, allowing each neuron to learn about nearby

features. While neural nets have been used for receptor–

ligand scoring previously [24], their use is pushing the

boundaries of deep learning techniques by increasing the

ability to learn from spatial interactions from known 3D

co-crystal structures [22�,25,26].

Receptor Flexibility. Another important characteristic of

docking programs is how they treat receptor flexibility.

While it is not computationally feasible to simulate full

protein flexibility when screening large numbers of

ligands, various strategies have been developed to

approximate receptor flexibility. For example, a common

strategy is the application of ensemble docking [27–29],

where docking is performed against multiple available

receptor structures. Additionally, partial receptor

flexibility has been modeled in a variety of ways, such

as rotamer libraries [30], side chain flexibility [31], and full

backbone flexibility near the binding site [32]. Because of

these advances it is becoming increasingly feasible to

account for protein flexibility in virtual screening.

Recently the use of metadynamics [33] has been applied

to protein–ligand binding [34]. Metadynamics is a

method of enhanced sampling which introduces an extra

variable into the system which is used to steer the

simulation away from areas which have been previously

sampled [33]. This method has allowed researchers to

combine ideas from induced fit in docking.

Lessons from prospective virtual screening
predictions
Because the aforementioned developments are generally

trained and tested retrospectively, it is difficult to fairly

compare different methods. To that end, analysis of

prospective community-wide experiments provides a

unique opportunity to evaluate methods and identify

problems with different approaches. The Drug Design

Data Resource (D3R) project was started as a joint project

between the NIH and UCSD with the goal of providing

blinded datasets for prospective evaluation of drug discov-

ery pipelines [11�,12��].

Pose prediction. Given compounds as SMILES strings [35],

predictions for targets for which there are one or more

publicly available co-crystal structures (Protein Data

Bank (PDB) [4]), are generally performed using three

major approaches: alignment-based [36��,37–40], stan-

dard docking as discussed above [36��,37–39,41–43], or

simulation-based [37,41,44]. Alignment- and docking-

based methods have been more consistent in prospective

tests [11�,12��]. In the former, conformers of each com-

pound are generated [45] and aligned to the ligand of an

available co-crystal structure. Alignment metrics can

involve chemical similarity measured by Tanimoto simi-

larity [36��,37,38], 3D shape similarity [40], and hybrid

3D shape/pharmacophore feature similarity method [39].

Poses are then minimized and ranked. As expected,

higher quality poses were generally correlated with
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Table 1

Best prospective pose prediction median RMSD from D3R

Grand Challenges

Receptor # Test

compounds

# PDB

structures

Best median

RMSD [Å]

Prospective

Best method

HSP90 5 >200 0.3a Align close

FXR 35 27 1.17b Dock close

Cathepsin S 24 25 1.3c Align close

MAP4K4 30 8 1.6a Align close

a [38].
b [11�].
c https://drugdesigndata.org/about/grand-challenge-3/cathepsin_s.
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