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Abstract The magnetohydrodynamic (MHD) flow of a generalized Maxwell fluid induced by a

moving plate has been investigated, where the second-order slip between the wall and the fluid in

the wall is considered. The fractional calculus approach is used to establish the constitutive relation-

ship model of the non-Newtonian fluid model. Exact analytical solutions for the velocity field and

shear stress in terms of Fox H-function are obtained by means of the Laplace transform. The solu-

tions for the generalized Maxwell second-order slip model without magnetic field, the MHD flow of

generalized Maxwell flow without slip effects or first-order slip model can be derived as the special

cases. Furthermore, the influence of the order of fractional derivative, the magnetic body force, the

slip coefficients and power index on the velocity and shear stress are analyzed and discussed in

detail. The results show that the velocity corresponding to flows with slip condition is lower than

that for flow with non-slip conditions, and the velocity with second-slip condition is lower than that

with first-order slip condition.
� 2017 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There are many physical phenomenons actually with incom-
plete viscoelastic fluid in engineering and industry, such as
polymer solutions, exotic lubricants, colloidal and suspension
solutions, food stuffs, synthetic propellants, molten plastics

and many others. These fluids have been modeled in a number
of diverse manners with their constitutive equations varying
greatly in complexity, among which the viscoelastic Maxwell

fluid model has been studied widely (Fetecau and Fetecau,
2004; Tan and Masuoka, 2007; Jamil et al., 2011;

Abbasbandy et al., 2014). The Maxwell model can be repre-
sented by a purely viscous damper and a purely elastic spring
connected in series (Christensen, 1971), which has been pro-

posed to describe the behavior of viscoelastic fluids, and has
had some success in describing polymeric liquids, it being more
amenable to analysis and more importantly experimental.

Rheological constitutive equations with fractional deriva-
tives (Podlubny, 1999; Song and Jiang, 1998; Imran et al.,
2017) have been proved to be a valuable tool to describe the
behaviors of viscoelastic properties. The fractional derivative

models of the viscoelastic fluids are derived from classical
equations, which are modified by replacing the time derivative
of an integer order by precisely non-integer order integrals or
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derivatives.With the development of research, the fractional
derivative models of the viscoelastic fluids are concerned by
considerable researchers. Song and Jiang, 1998 used the frac-

tional calculus to analyze the experiment data of viscoelastic
gum and obtained satisfactory results. Fetecau et al., 2008
investigated the unsteady flow of a second-grade fluid induced

by the time-dependent motion of a plate between two side
walls perpendicular to the plate. Xue et al., 2008 and Xue
and Nie, 2009 discussed the exact solutions of the Rayleigh-

Stokes problem for a heated generalized viscoelastic fluid in
a porous half-space. Jamil et al., 2011 researched the unsteady
flow of an incompressible Maxwell fluid with fractional deriva-
tive induced by a sudden moved plate, and analyzed the influ-

ence of the material and the fractional parameters on the fluid
motion. Qi and Guo, 2014 studied a new heat conduction
equation which is based on the time-nonlocal generalized of

Fourier law, the exact solution of an initial-boundary value
problem was studied and presented under series forms. Fan
et al., 2015 presented an inverse problem to estimate parame-

ters in generalized fractional Zener model based on the Baye-
sian method, and performed some examples to certify the
validity of the method. Imran et al., 2017 investigated some

natural convection flows of differential type fluids with Caputo
fractional derivatives, and solved the velocity fields using
Laplace transform method.

The assumption that a liquid adheres to a solid boundary

so called no-slip boundary condition has been proved to be
inadequate in several situations such as: the mechanics of thin
fluids, flows in micro-channels, or flows of polymeric liquids

with high molecular weight. For describing the slip that occurs
at solid boundaries, a large number of models have been pro-
posed. In recent years, Ebaid, 2008 studied the effects of mag-

netic field and wall slip conditions on the peristaltic transport
of a Newtonian fluid in an asymmetric channel. Jamil and
Khan, 2011 considered the first order slip effect on fractional

Maxwell fluids, and obtained the solutions of velocity field
and shear stress. Vieru and Rauf, 2011 and Vieru and Zafar,
2013 investigated some Couette flows and Stokes flows of a
Maxwell fluid with slip condition. The exact solutions of

generalized Oldroyd-B fluid flow with the slip effects were
obtained by Zheng et al., 2012. Han et al., 2015 presented a
slip flow of a generalized Burgers’ fluid between two side walls

generalized by an exponential accelerating plate and a constant
pressure, the analytical solutions are established and analyzed.
Akbar and Khan, 2016a given the numerical study of carbon

nanotubes suspended magnetohydrodynamic(MHD)
stagnation point flow over a stretching sheet with convective
slip. Shakeel et al., 2016 studied the flows of an Oldroyd-B
fluid under the consideration of slip condition at the boundary,

the fluid motion is generated by the flat plate which has a
translational motion in its plane with a time-dependent
velocity. Hayat et al., 2016 investigated the unsteady MHD

flow over exponentially stretching sheet with velocity and
thermal slip boundary conditions, and analyzed various perti-
nent parameters on the axial velocity and temperature

distributions.
The motivation of the present study is to find the velocity

field and shear stress corresponding to the second-order slip

flow of a generalized Maxwell fluid over a plate with the
assumption of low-magnetic Reynolds number. The fractional
calculus approach is used to establish the constitutive relation-
ship of the non-Newtonian fluid model. The exact solutions,

obtained by means of a finite Fourier sine transform and a dis-
crete Laplace transform, are presented using series forms in
terms of the Fox H-function. The solutions of generalized

Maxwell fluid without magnetic field effect, or the first-order
slip, or without slip can be recovered from our solutions.
Finally, the influence of the material, slip, fractional, magnetic

and index parameters on the motion of generalized Maxwell
fluids are underlined by graphical illustrations. The difference
among generalized Maxwell fluid and classical Maxwell fluid

models is also analyzed.

2. Governing equations

The constitutive equations for an incompressible fluid are
given by

r � V ¼ 0; q
dV

dt
¼ r � Tþ qb; ð1Þ

where T is the Cauchy stress tensor, V is the velocity vector, q
is the constant density of the fluid, b is the body force field.
There we consider the MHD fluid, which is affected by mag-

netic field B0. We neglected the induced magnetic field by
assuming very large magnetic diffusivity. It is also assumed
that no electric field is applied.

The constitutive equation of an incompressible Maxwell

fluid is written in the form (Fetecau and Fetecau, 2004; Tan
and Masuoka, 2007; Han et al., 2015):

T ¼ �pIþ S; Sþ k
DS

Dt
¼ lA; ð2Þ

where

DS

Dt
¼ dS

dt
þ V � rS� LS� SLT; ð3Þ

and �pI denotes the indeterminate spherical stress, S is the

extra-stress tensor, A ¼ Lþ LT is the first Rivlin–Ericksen ten-
sor, L is the velocity gradient, l; k are material constants,
known as the viscosity coefficient, the relaxation times, respec-

tively. If k ¼ 0, the Eq. (2) is the constitutive equation of a
Newtonian fluid.

We consider the fluid is permeated by an imposed uniform
magnetic field B0 which acts in the positive y-coordinate (Jamil

et al., 2013; Akbar and Khan, 2016b; Akbar et al., 2016a,
Akbar et al., 2016b,Akbar et al., 2016c), by assuming a very
small magnetic Reynolds number, the induced magnetic field

is neglected. Hence, the Lorentz force caused by the external

magnetic field can be represented as (�rB2
0u, 0, 0). B0 is the

magnitude of B0 and r is the electrical conductivity of the fluid,

u denotes the x-component of the fluid velocity. The velocity
and shear stress for one dimensional flow take the form:

V ¼ uðy; tÞi; S ¼ Sðy; tÞ; ð4Þ
where i is the unit vectors in the x-direction. For this flow, the

constant of incompressible is automatically satisfied. Taking
account of the initial condition Sðy; 0Þ ¼ 0 and in the absence
of pressure gradient in the x-direction, the motion equation of

the generalized Maxwell fluid is:

ð1þ k@tÞsðy; tÞ ¼ l@yuðy; tÞ; ð5Þ

ð1þ k@tÞ @u
@t

¼ m
@2u

@y2
�Mð1þ k@tÞu; ð6Þ
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