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Abstract This paper is devoted to study the boundedness, ultimate boundedness, and the asymp-

totic stability of solutions for a certain class of third-order nonlinear differential equations using

Lyapunov’s second method. Our results improve and form a complement to some earlier results

in the literature.
� 2016 University of Bahrain. Production and Hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The investigation of the qualitative properties of third order
differential equations (with and without delay) have been inten-
sively discussed and are still being investigated in the literature.

By employing the Lyapunov’s method, many good and inter-
esting results have been obtained concerning the boundedness,
ultimate boundedness and the asymptotic stability of solutions

for certain nonlinear differential equations. See, the papers of
Ademola and Arawomo (2013); Ademola et al. (2013);
Burton (2005); Hara (1971); Bao and Cao (2009); Pan and

Cao (2010, 2011, 2012); Omeike (2010); Oudjedi et al. (2014);
Remili and Beldjerd (2014); Remili and Oudjedi (2014);
Remili and Damerdji Oudjedi (2014); Li and Lizhi (1987);
Tunç (2007a, b, 2010); Yoshizawa (1966) and their references.

In 1992, (Zhu, 1992), established some sufficient conditions
to ensure the stability, boundedness and ultimate boundedness
of the solutions of the following third order non-linear delay

differential equation

x000 þ ax00 þ bx0 þ fðxðt� rÞÞ ¼ eðtÞ:
Recently, (Graef et al., 2015), studied the following third order
non autonomous differential equation with delay

gðxðtÞÞx0ðtÞ½ �00 þ ðhðxðtÞÞx0ðtÞÞ0 þuðxðtÞÞx0ðtÞþ fðxðt� rÞÞ¼ eðtÞ;

which is more general than those considered by Zhu (1992).
Simulated by the above reasons, we investigate the bounded-

ness, ultimate boundedness, and the asymptotic stability of
solutions for a kind of third-order differential equation with
delay as follows

gðx00ðtÞÞx00ðtÞ½ �0 þ hðx0ðtÞÞx0ðtÞð Þ0 þ uðxðtÞÞxðtÞð Þ0 þ fðxðt� rÞÞ¼ eðtÞ;
ð1:1Þ

where r > 0 is a fixed delay and e; f; g; h, and u are continu-
ous functions in their respective arguments with fð0Þ ¼ 0. The

continuity of functions e; f; g; h, and u guarantees the exis-
tence of the solution of Eq. (1.1). In addition, it is also sup-

posed that the derivatives f 0ðxÞ, g0ðuÞ; h0ðyÞ and u0ðxÞ exist
and are continuous.

The main purpose of this paper is to establish criteria for
the uniform asymptotic stability and, uniform ultimate bound-

edness, of solutions for the third order non-linear differential
Eqs. (1.1). The results obtained in this investigation provide
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a good supplement to the existing results on the third order
nonlinear delay differential equations in the literature as
(Zhu, 1992; Graef et al., 2015).

The remainder of this paper is organized as follows. In Sec-
tion 2, we give a theorem, which deals with asymptotic stability
of the zero solution of the delay differential Eq. (1.1) with

eðtÞ ¼ 0. In Section 3, we introduced theorem which discusses
the uniform boundedness, and uniform ultimate boundedness
of the solutions of Eq. (1.1) for the case eðtÞ – 0. Eventually,

some conclusions are given in Section 4.

2. Stability

Take general nonlinear non-autonomous delay differential
equation in the form

x0 ¼ fðxtÞ; xtðhÞ ¼ xðtþ hÞ; �r 6 h 6 0; t P 0; ð2:1Þ
where f : CH ! Rn is a continuous mapping, fð0Þ ¼ 0,
CH :¼ f/ 2 ðC½�r; 0�; RnÞ : k/k 6 Hg, and for H1 < H, there
exists LðH1Þ > 0, with jfð/Þj < LðH1Þ when k/k < H1.

Lemma 2.1 Krasovskii, 1963. If there is a continuous func-

tional Vðt;/Þ : ½0;þ1Þ � CH ! ½0;þ1Þ locally Lipschitz in /
and wedges Wi such that:

(i) If W 1ðk/kÞ 6 V ðt;/Þ, V ðt; 0Þ ¼ 0 and V 0
ð2;1Þðt;/Þ 6 0.

Then, the zero solution of (2.1) is stable. If in addition
V ðt;/Þ 6 W 2ðk/kÞ Then, the zero solution of (2.1) is uni-
formly stable.

(ii) If W 1ðk/kÞ 6 V ðt;/Þ 6 W 2ðk/kÞ and V 0
ð2;1Þðt;/Þ 6

�W 3ðk/kÞ. Then, the zero solutionof (2.1) is uniformly
asymptotically stable.

Now, suppose that there are positive constants

g0; g1; h0; h1;u0;u1; d0; d1 and l1 such that the following condi-
tions which will be used on the functions that appeared in Eq.
(1.1) are satisfied:

(i) 0 < g0 6 gðuÞ 6 g1; 0 < h0 6 hðyÞ 6 h1;
0 < u0 6 uðxÞ 6 u1,

(ii) f ð0Þ ¼ 0; f ðxÞx P d0 > 0 ðx– 0Þ, and jf 0ðxÞj 6 d1 for all x,

(iii) d1
u0

< l1 <
h0
g1
,

(iv)
Rþ1
�1 ð g0ðuÞj j þ h0ðuÞj j þ u0ðuÞj jÞdu < 1.

For ease of exposition throughout this paper we will adopt

the following notations

PðtÞ ¼ gðx00ðtÞÞ; h1ðtÞ ¼ P0ðtÞ
P2ðtÞ ;

h2ðtÞ ¼ h0ðx0ðtÞÞx00ðtÞ and h3ðtÞ ¼ u0ðxðtÞÞx0ðtÞ: ð2:2Þ
and

r1ðtÞ ¼ minfx00ð0Þ; x00ðtÞg; r2ðtÞ ¼ maxfx00ð0Þ; x00ðtÞg; ð2:3Þ
q1ðtÞ ¼ minfxð0Þ; xðtÞg; q2ðtÞ ¼ maxfxð0Þ; xðtÞg;
w1ðtÞ ¼ minfx0ð0Þ; x0ðtÞg; w2ðtÞ ¼ maxfx0ð0Þ; x0ðtÞg:
For the case eðtÞ � 0, The stability result of this paper is the

following theorem.

Theorem 2.2. If in addition to the hypotheses (i)–(iv), suppose
that the following is also satisfied

r < min
2g0ðh0 � l1g1Þ

g21d1
;
2g0ðl1u0 � d1Þ
d1ð2l1g0 þ 1Þ

� �
;

Then every solution of (1.1) is uniformly asymptotically stable.

Proof. Eq. (1.1) is equivalent to the following system

x0 ¼ y

y0 ¼ z

PðtÞ ð2:4Þ

z0 ¼ � hðyÞ
PðtÞ z� h2ðtÞy� h3ðtÞx� uðxÞy� fðxÞ

þ
Z t

t�r

yðsÞf 0ðxðsÞÞds;

The main tool in the proofs of our results is the continu-
ously differentiable functional W ¼ Wðt; xt; yt; ztÞ defined as

Wðt; xt; yt; ztÞ ¼ e�
xðtÞ
l V1ðt; xt; yt; ztÞ ¼ e�

xðtÞ
l V1; ð2:5Þ

where

V1 ¼ l1FðxÞ þ fðxÞyþ uðxÞ
2

y2 þ 1

2PðtÞ z
2 þ l1yz

þ 1

2
l1hðyÞy2 þ k

Z 0

�r

Z t

tþs

y2ðnÞdnds; ð2:6Þ

xðtÞ ¼
Z t

0

QðsÞds; and QðtÞ ¼ h1ðtÞj j þ h2ðtÞj j þ h3ðtÞj j;
ð2:7Þ

such that FðxÞ ¼ R x

0
fðuÞdu and h1; h2; h3, are defined as (2.2).

l and k are some positive constants which will be specified

later in the proof. We observe that the above functional V1

can be rewritten as follows

V1 ¼ l1FðxÞþ
uðxÞ
2

yþ fðxÞ
uðxÞ

� �2

� f 2ðxÞ
2uðxÞþ

1

2PðtÞðzþl1PðtÞyÞ2

þl1ðhðyÞ�l1PðtÞÞ
2

y2þk
Z 0

�r

Z t

tþs

y2ðnÞdnds:

Considering the conditions (i) and (iii), we derive that

l1ðhðyÞ � l1PðtÞÞ
2

P
l1ðh0 � l1g1Þ

2
> 0:

It follows that there exists sufficiently small positive constant
d2 such that

1

2PðtÞ ðzþ l1PðtÞyÞ2 þ
l1ðhðyÞ � l1PðtÞÞ

2
y2

P d2y
2 þ d2z

2: ð2:8Þ
Under the hypotheses (i)–(iii), we have

l1FðxÞ � f 2ðxÞ
2uðxÞ P l1

R x

0
1� f 0 ðuÞ

l1uðxÞ

� �
fðuÞdu

P l1

R x

0
1� d1

l1u0

� �
fðuÞdu

P d3FðxÞ;
where

d3 ¼ l1 1� d1
l1u0

� �
> l1 1� l1

l1

� �
¼ 0:

Moreover, assumption (ii) implies
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