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This paper proposes an adjusted ridge regression estimator for f§ for the linear regression
model. The merit of the proposed estimator is that it does not require estimating the ridge param-
eter k unlike other existing estimators. We compared our estimator with an ordinary least squares
(LS) estimator and with some well known estimators proposed by Hoerl and Kennard (1970), ordi-
nary ridge regression (RR) estimator and generalized ridge regression (GR) and some estimators

proposed by Kibria (2003) among others. A simulation study has been conducted and compared
for the performance of the estimators in the sense of smaller mean square error (MSE). It appears
that the proposed estimator is promising and can be recommended to the practitioners.
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open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Regression analysis is one of the frequently used tools for fore-
casting in almost all disciplines; hence estimation of unknown
parameters is a common interest for many users. These esti-
mates can be found by various estimation methods. The easiest
and the most common method of them is the ordinary least
squares (LS) technique, which minimizes the squared distance
between the estimated and observed values. Multicollinearity
among the explanatory variables in the regression model is
an important problem that exhibits serious undesirable effects
on the analysis faced in applications. The LS estimator is sen-
sitive to number ‘errors’, namely, there is an ‘explosion’ of the
sampling variance of the estimators. Alternative estimators are
designed to combat multicollinearity-yield-biased estimators.
One of the popular numerical techniques to deal with mul-
ticollinearity is the ridge regression due to Hoerl and Kennard
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(1970). Ridge regression approach has been studied by
McDonald and Galarneau (1975), Swindel (1976), Lawless
(1978), Singh and Chaubey (1987), Sarkar (1992), Saleh and
Kibria (1993), Kibria (2003), Khalaf and Shukur (2005),
Zhong and Yang (2007), Batah et al. (2008), Yan (2008),
Yan and Zhao (2009), Muniz and Kibria (2009), Yang and
Chang (2010), Khalaf (2012) and Dorugade (2014) and others.
Ridge Regression estimator has been the benchmarked for
almost all the estimators developed later in this context.
Most of the researchers compare superiority of their suggested
estimators with LS, RR, GR and other existing methods in
terms of minimum MSE criterion in the presence of multi-
collinearity. In this article, our primary aim is to suggest an
estimator by modifying the ordinary ridge regression (RR)
estimator avoiding the computation of ridge parameter and
secondly to evaluate the performance of our estimator with
LS, RR and GR estimators in the presence of sever or extre-
mely sever multicollinearity.

This article is organized as follows: in Section 2, we define
model and parameter estimation methods with their bias and
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Figure 1  “f,” for AR, RR and GR estimators (p = 0.95,p = 3

and f = (10, 4, 1, 8)).

MSE. In Section 3, we have proposed biased estimator. We
compare our new estimator in the MSE sense, with the RR
estimator, in the same section. In Section 4, performances of
the proposed estimators with respect to the scalar MSE crite-
rion compared to LS, RR and GR estimators are evaluated
on basis of the Monte Carlo Simulation results. Influence of
choice of k to compute RR on the proposed estimator AR is
also studied in the same section. Finally, article ends with some
concluding remarks.

2. Model specifications and the estimators

We consider the linear regression model with p predictors and
n observations:

Y= XB+e, (1)

where Y= (Y1, Ya,....Y.), = (BiBs---.B,)s &= (a1,
..ye)and X = (x1,X,...,x,). &'s are independently and
identically distributed as normal with mean 0 and variance
o®. Assume that the Y;'s are centered and the covariates x;'s
are standardized. Let A and T be the matrices of eigen values
and eigen vectors of XX, respectively, satisfying
T'X'XT = A = diagonal(Ay, 4, ..., 4,), where 4; being the ith
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Figure 2 “f,” for AR, RR and GR estimators (p = 0.99,p = 3

and g = (7, 4, 1, 8)).
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Figure 3 “f,” for AR, RR and GR estimators (p = 0.999,

p=3and § = (14, 5, 2, 6)).

eigenvalue of X’X and T'T = TT = I,. We obtain the equiva-
lent model

Y="Zc+¢, (2)

where Z = XT, it implies that Z’Z = A, and a =T f (see
Montgomery et al., 2001).
Then LS estimator of o is given by

s =(Z22)'ZY=A"7Y. (3)
Therefore, LS estimator of f§ is given by

Bis = Thys.
2.1. Generalized ridge regression estimator (GR)

In order to combat multicollinearity and improve the LS esti-
mator, Hoerl and Kennard (1970) suggested an alternative
estimator by adding a ridge parameter k to the diagonal ele-
ments of the least square estimator. They also suggested gener-
alized ridge regression (GR) estimator by using separate ridge
parameter for each regressor in the ridge regression. Also, if
the optimal values for biasing constants differ significantly
from each other, then this estimator has the potential to save
a greater amount of MSE than the LS estimator (Stephen
and Christopher, 2001).
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Figure 4 “f,” for AR, RR and GR estimators (p = 0.9999,

p =3and f = (10, 1, 1, 4)).
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