Accepted Manuscript

Promotion effect of H₂ pretreatment on CeO₂ catalyst for NH₃-SCR reaction

Hongbing Lv, Xiaoyu Hua, Weiyang Xie, Qing Hu, Jianbo Wu, Ruitang Guo

PII:\$1002-0721(18)30209-6DOI:10.1016/j.jre.2017.12.012

Reference: JRE 149

To appear in: Journal of Rare Earths

Received Date: 10 October 2017

Revised Date: 26 December 2017

Accepted Date: 28 December 2017

Please cite this article as: Lv H, Hua X, Xie W, Hu Q, Wu J, Guo R, Promotion effect of H₂ pretreatment on CeO₂ catalyst for NH₃-SCR reaction, *Journal of Rare Earths* (2018), doi: 10.1016/j.jre.2017.12.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Promotion effect of H_2 pretreatment on CeO₂ catalyst for NH₃-SCR reaction

Hongbing Lv^a, Xiaoyu Hua^b, Weiyang Xie^b, Qing Hu^b, Jianbo Wu^b, Ruitang Guo^{c*}

a. Zhejiang Energy Group, Hangzhou China

b. Zhejiang Energy Group R&D, Hangzhou China

c. School of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai China

Foundation item: Project supported by National Natural Science Foundation of China (21546014) and the National Natural Science Foundation of Shanghai (14ZR1417800) Corresponding author: Rui-tang Guo (Email:grta@zju.edu.cn), Tel.: +86-21-35303809

Abstract: In this study, the promotion effect of H_2 pretreatment on the SCR performance of CeO₂ catalyst was investigated based on the characterization results of XRD, H_2 -TPR, Raman and *in situ* DRIFT techniques. Lower crystallinity, higher reducibility and surface acidity can be found on CeO₂-H catalyst. The results of DRIFT study reveal that the pretreatment of CeO₂ catalyst with H_2 can facilitate the adsorption of NH₃ and NO_x species, while the adsorbed NO_x is basically inactive in the NH₃-SCR reaction. Moreover, the reaction mechanism of the NH₃-SCR reaction over CeO₂ catalyst is not changed by H_2 pretreatment, which is mainly under the control of Eley-Rideal (E-R) mechanism. The enhanced SCR performance of CeO₂-H catalyst is mainly due to the promoted NH₃ adsorption and the subsequent facilitation of SCR reaction through E-R pathway.

Keywords: CeO₂ catalyst; SCR; H₂ pretreatment; in situ DRIFT; mechanism; Rare earths

1. Introduction

Due to its high reliability and NO_x removal efficiency, selective catalytic reduction (SCR) of NO_x with NH₃in the presence of excess oxygen has been applied widely for controlling NO_x emission from stationary and mobile sources^[1,2]. For this purpose, V-based catalyst (including V₂O₅-WO₃/TiO₂ and V₂O₅-MoO₃/TiO₂) is the most commercially available catalyst used in SCR reactor^[3]. However, the utilization of V-based SCR catalyst has brought about some inevitable problems including narrow operation temperature, low selectivity at high temperature and the toxicity of VO_x species to human health and environment^[4–6]. Therefore, developing alternative SCR catalyst without V species is of great importance for future NO_x emission control.

As a well-known alternative SCR catalyst, ceria has attracted considerable attention due to its strong oxygen transportcapacity of Ce^{4+}/Ce^{3+} pair and the high oxygen storage ability^[7-10]. Recently, ceria-based catalysts supported on TiO₂, Al₂O₃ and TiO₂-SiO₂ have been successfully used in NH₃-SCR reaction^[11-13]. To further enhance its SCR performance, the modification of Ce-based SCR catalyst by some transition metals such as W, Fe, Cu, Sb, Nb and Mo has been validated to be an effective approach by several groups^[14-19]. Moreover, the precursortype and surface acid-base property had a significant impact on the SCR performance of Ce-based catalysts^[20,21]. Besides that, the pretreatment of Ce-based SCR catalyst by some acidic or reductive gases including SO₂, HF, CO and H₂ has been proven to be another pathway for improving its SCR activity^[22–25]. Yu et al.^[23] found that the pretreatment of Ce/TiO₂ catalyst by H₂could enhance its SCR activity. To further understand the promotion mechanism, the effect of H₂ pretreatment on the NH₃-SCR reaction over CeO₂ catalyst was investigated based on different characterization techniques. And the effect of H₂ pretreatment on the NH₃-SCR reaction mechanism over CeO₂ catalyst is also be discussed.

2. Experimental

2.1 Catalyst preparation

In this study, pure CeO₂ catalyst sample was prepared by the thermal decomposition of cerium nitrate in a muffle furnace under air atmosphere at 550 °C for 4 h. The H₂-pretreated catalyst sample was obtained by treating the

Download English Version:

https://daneshyari.com/en/article/7696495

Download Persian Version:

https://daneshyari.com/article/7696495

Daneshyari.com