ARTICLE IN PRESS

Journal of Rare Earths xxx (2018) 1-6

Contents lists available at ScienceDirect

Journal of Rare Earths

journal homepage: http://www.journals.elsevier.com/journal-of-rare-earths

Synthesis, characterization and cell imaging properties of rare earth compounds based on hydroxamate ligand $\stackrel{\star}{\sim}$

Linyan Yang ^{a, b}, Yanping Zhang ^c, Liwei Hu ^a, Yunhe Zong ^a, Ruili Zhao ^a, Tianming Jin ^{a, **}, Wen Gu ^{c, d, *}

^a College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China

^b Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China

^c College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China

^d Key Laboratory of Advanced Energy Materials Chemistry (KLAEMC), Nankai University, Tianjin 300071, China

ARTICLE INFO

Article history: Received 25 April 2017 Received in revised form 16 November 2017 Accepted 17 November 2017 Available online xxx

Keywords: Rare earth Fluorescence Cell imaging

ABSTRACT

Six binuclear rare earth compounds were synthesized through the ligand of 4-Bromo-N-hydroxy-Nmethyl-benzamide (sH_2bha). Compounds 1-3 are isomorphous, and compound 1 is crystallized in the monoclinic system with the $P2_1/c$ space group. Compounds 4 and 5 are isomorphous, and compound 4 is crystallized in the triclinic system with the P-1 space group. Compound 6 is crystallized in the triclinic system with the P-1 space group. The compounds were characterized by thermogravimetric analysis (TGA) and IR spectroscopy. The fluorescence spectrum in the visible area shows characteristic peaks of Eu, Tb, and Dy compounds. The efficiency of Eu compound on the viability of PC3 cells was assessed using CCK8 assays. From the CCK8 results, ionic concentration may have a great effect on PC3 cells' proliferation. Eu compound shows red fluorescence in the cytoplasm of PC3 cell. As for Eu compound, it might have potential application in cell imaging technology.

© 2018 Published by Elsevier B.V. on behalf of Chinese Society of Rare Earths.

1. Introduction

There has been enormous research interest in the coordination chemistry of rare earth complexes owing to their pronounced luminescence properties.^{1–4} Rare earth complexes luminescent material is a research subject that integrates inorganic, organic, and biological luminescence.⁵ In view of the fact that lanthanide ions typically show weak absorption of light, luminescent lanthanide complexes exhibit distinctive photophysical properties after the

introduction of organic ligands.⁶ Lanthanide complexes have successfully replaced the organic chromophore luminescence immunity because of recognizable sharp emission lines over narrow wavelength ranges.^{7–9} In order to increase the luminescence efficiency of rare earth ions, most research is devoted to the selection and optimization of rare earth coordination polymers, while Eu(III) complexes have been considered as attractive luminescent materials due to their strong red emission.⁵

Hydroxamic acids are a family of compounds that possess strong chelating properties with various metal ions.¹⁰ Given the important potential applications of lanthanide complexes and the fascinating properties of the hydroxamic acid, we investigated a series of lanthanide-based complexes $[Ln_2(sbha)_2(hfac)_4(H_2O)_2]$ (Ln = Eu (1), Tb (2), Gd (3), Dy (4), Ho (5), Nd (6)) based on 4-Bromo-Nhydroxy-N-methyl-benzamide (sH₂bha) and rare earth hexafluoroacetylacetonacetate $[Ln(hfac)_3]$. The fluorescence spectrum in the visible area shows characteristic peaks of Eu, Tb, and Dy compounds. As seen from the results, Eu compound shows red fluorescence in the cytoplasm of PC3 cell, and Eu compound has entered the cytoplasm, not just on the cell membrane. In further experiments, Eu compound may have potential application in living-animal imaging technology.

https://doi.org/10.1016/j.jre.2017.11.004

1002-0721/© 2018 Published by Elsevier B.V. on behalf of Chinese Society of Rare Earths.

Please cite this article in press as: Yang L, et al., Synthesis, characterization and cell imaging properties of rare earth compounds based on hydroxamate ligand, Journal of Rare Earths (2018), https://doi.org/10.1016/j.jre.2017.11.004

^{*} Foundation item: Project supported by State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) (CMEMR2016-B12), the National Natural Science Foundation of China (31572492, 21401031, 21371103, 31372482), the Innovative and Entrepreneurial Training Plan for Tianjin College Students (201710061035), the Natural Science Foundation of Tianjin (12JCZDJC22100), the General Fund of Application Foundation and Advanced Technology Program of Tianjin (14JCYBJC30000), the Veterinary Biotechnology Scientific Research Innovation Team of Tianjin, China (TD12-5019).

^{*} Corresponding author. College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China. Fax: +86 22 23502779.

^{**} Corresponding author. College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China. Fax: +086 22 23781297.

E-mail addresses: JTMSCI@163.com (T.M. Jin), guwen68@nankai.edu.cn (W. Gu).

2

ARTICLE IN PRESS

L.Y. Yang et al. / Journal of Rare Earths xxx (2018) 1-6

2. Experimental

2.1. Materials and physical measurements

All commercially available chemicals and solvents were of reagent grade and used without further purification. The ligand of 4-Bromo-N-hydroxy-N-methyl-benzamide (sH₂bha) was synthesized according to the method reported previously.¹⁰ Rare earth hexa-fluoroacetylacetonacetate [Ln(hfac)₃] was synthesized according to the method reported previously.¹¹ The single crystalline powder samples were prepared by crushing the crystals and scanned from 3° to 60° with a scanning speed of 0.02 °/s. Thermogravimetric analysis (TGA) were performed on a NETZSCH TG 209 instrument with a heating rate of 10 °C/min in the N₂ atmosphere. IR spectra were recorded in the range of 4000–400 cm⁻¹ on a Perkin–Elmer spectrometer with KBr pellets. Fluorescence spectroscopy data were recorded on a HORIBA Jobin Yvon HJY-FL3-221-TCSPC spectrophotometer.

2.2. Preparation of compounds

Synthesis procedure of $[Ln_2(sbha)_2(hfac)_4(H_2O)_2]$ (Ln = Eu (1), Tb (2), Gd (3), Dy (4), Ho (5), Nd (6)) is as follows:

Ln(hfac)₃ (0.05 mmol, 0.039 g) was dissolved in n-heptane (10 mL), and the solution was refluxed for 2 h. Then the solution was cooled to 60 °C. A CH₂Cl₂ solution (2 mL) of sH₂bha (0.1 mmol) was added. And then methanol (0.2 mL) was added. The mixture was stirred for 30 min, cooled slowly to room temperature, and solution A was obtained. Ln(hfac)₃ (0.05 mmol, 0.039 g) was placed in the bottom of the tube, CH₂Cl₂ (4 mL) was added. Solution A was slowly added, and finally *n*-heptane (4 mL) was slowly added. Via standing, solution diffusion, and slow evaporation of solvents, needle-shaped crystals suitable for X-ray analysis were precipitated after one week. FT-IR (KBr, ν , cm⁻¹): 3338, 2357, 1649, 1460, 1267,

Table 1		
Crystallographic Data for compounds	1–6	j.

1211, 1147, 910, 804, 663 (7); 3335, 2355, 1651, 1462, 1261, 1215, 1143, 915, 802, 661 (8); 3340, 2362, 1653, 1465, 1260, 1211, 1145, 914, 804, 662 (9); 3344, 2357, 1651, 1462, 1263, 1211, 1141, 914, 806, 663 (10); 3336, 2357, 1653, 1465, 1258, 1210, 1141, 916, 804, 661 (11); 3335, 2358, 1653, 1463, 1257, 1208, 1144, 912, 804, 663 (12).

2.3. X-ray crystallography

Diffraction data for compounds **1–6** was collected with a Bruker SMART APEX CCD instrument with graphite monochromatic Mo K α radiation ($\lambda = 0.071073$ nm). The data were collected at 293 (2) K. The absorption corrections were made by multi-scan methods. The structure was solved by charge flipping methods with the program Olex2 and refined by full-matrix least-squares methods on all F2 data with Olex2. Selected bond lengths and angles for **1–6** are given in Tables S1–S6 (supporting information). The crystallographic details are provided in Table 1.

2.4. Cell culture

Prostate Cancer PC3 cells and Hela cells were provided by the Chinese Academy of Sciences (Shanghai, China). The cells were routinely cultured with RPMI-1640 supplemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and 100 μ g/mL streptomycin in a humidified atmosphere of 5% CO₂ at 37 °C. To maintain cells in the exponential growth phase, they were passaged at a ratio of 1:3 every 3 days. Before use, the cells were trypsinized, resuspended, and then precultured. Caution was used in handling all human biological material.^{12,13}

2.5. In vitro cytotoxicity of compound 1

To evaluate the cell cytotoxicity of compound **1**, we performed CCK8 (method of transcriptional and translational) assays to

Identification	1	2	3	4	5	6
Empirical formula	C17H8BrEuF12NO7	C ₁₇ H ₈ BrF ₁₂ NO ₇ Tb	C17H8BrF12NO7Gd	C ₁₇ H ₈ BrF ₁₂ NO ₇ Dy	C17H8BrF12NO7H0	C ₁₇ H ₈ BrF ₁₂ NO ₇ Nd
Formula weight	798.11	805.07	803.40	808.65	811.08	790.39
Т(К)	113.15	113.15	113.15	113.15	113.15	113.15
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	P-1	P-1	P-1
<i>a</i> (nm)	0.80093 (8)	0.80095 (7)	0.80135 (8)	0.7964 (3)	0.79735 (18)	0.80995 (13)
<i>b</i> (nm)	2.3150 (2)	2.3030 (2)	2.3106 (3)	1.2454 (5)	1.2444 (2)	1.07697 (17)
<i>c</i> (nm)	1.29455 (12)	1.29229 (12)	1.29373 (12)	1.3198 (2)	1.3185 (2)	1.4528 (2)
α(°)	90	90	90	66.82 (4)	66.394 (8)	95.082 (2)
β(°)	95.151	95.473 (2)	95.351 (2)	80.29 (3)	80.447 (11)	103.383 (3)
γ(°)	90	90	90	87.01 (4)	87.204 (12)	97.243 (3)
Volume/nm ³	2.3906 (4)	2.3728 (4)	2.3850 (4)	1.1860 (8)	1.1819 (4)	1.2139 (3)
Ζ	4	4	4	2	2	2
$\rho (mg/mm^3)$	2.218	2.254	2.237	2.264	2.279	2.162
F (000)	1516	1524.0	1520.0	764.0	766.0	752.0
Theta range for data collection	6.022°-56.632°	6.02°-55°	6.014°-54.996°	6.05°-55.158°	6.052°-55.33°	6°-55.02°
Index ranges	-10 < h < 10 - 30	-10 < h < 10	-10 < h < 10	-10 < h < 10	-10 < h < 10	-10 < h < 10
index ranges	< k < 30 - 17 < l < 15	29 < k < 29 - 16	$-30 \le k \le 30$ -16	$15 \le k \le 15 - 17$	$-16 \le k \le 16$	$-13 \le k \le 13$ -18
		< l < 16	< l < 16	< l < 16	$-17 \le l \le 16$	< l < 18
Reflections collected	31.742	30.137	30.450	15.434	14.242	14.423
Independent reflections	$5908 [R_{int} = 0.0262]$	$5422 [R_{int} = 0.0288]$	$5746 [R_{int} = 0.0307]$	$5374 [R_{int} = 0.0288]$	$5375 [R_{int} = 0.0245]$	5473 $[R_{int} = 0.0209]$
Data/restraints/parameters	5908/0/353	5422/0/353	5476/0/353	5374/0/353	5375/0/353	5473/0/353
Goodness-of-fit on F^2	1.039	1.031	1.043	1.031	1.135	1.282
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0160.$	$R_1 = 0.0164.$	$R_1 = 0.0160.$	$R_1 = 0.0206.$	$R_1 = 0.0208$.	$R_1 = 0.0334$.
	$wR_2 = 0.0409$	$wR_2 = 0.0412$	$wR_2 = 0.0406$	$wR_2 = 0.0562$	$wR_2 = 0.0532$	$wR_2 = 0.0863$
R indices (all data)	$R_1 = 0.0187,$	$R_1 = 0.0187$	$R_1 = 0.0185$,	$R_1 = 0.0220,$	$R_1 = 0.0222,$	$R_1 = 0.0353$,
	$wR_2 = 0.0416$	$wR_2 = 0.0418$	$wR_2 = 0.0411$	$wR_2 = 0.0566$	$wR_2 = 0.0535$	$wR_2 = 0.0867$
Largest diff. peak/hole/(e/nm ³)	930/-520	970/-490	850/-710	1280/-940	750/-700	2070/-930

Please cite this article in press as: Yang L, et al., Synthesis, characterization and cell imaging properties of rare earth compounds based on hydroxamate ligand, Journal of Rare Earths (2018), https://doi.org/10.1016/j.jre.2017.11.004

Download English Version:

https://daneshyari.com/en/article/7696819

Download Persian Version:

https://daneshyari.com/article/7696819

Daneshyari.com