EI SEVIED

JOURNAL OF RARE EARTHS, Vol. 35, No. 9, Sep. 2017, P. 927

Experimental study and thermodynamic calculation of Lu₂O₃-SiO₂ binary system

YE Xinyu (叶信宇)^{1,2,*}, LUO Yang (罗 洋)¹, LIU Songbin (刘松彬)¹, WU Di (吴 迪)², HOU Dejian (侯得健)¹, YANG Fengli (杨凤丽)¹

(1. School of Metallurgy and Chemistry Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2. National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China)

Received 17 October 2016; revised 23 February 2017

Abstract: As a binary system of BaO-Lu₂O₃-SiO₂ ternary system, Lu₂O₃-SiO₂ system was optimized and calculated by CALPHAD approach based on available phase diagram and relevant thermodynamic data of RE₂O₃-SiO₂ (RE=Lu,Yb,Y) binary systems as well as our experimental data of Lu₂O₃-SiO₂ system obtained by quenching experiment. The Gibbs free energy of high temperature solution was described by an ionic two-sublattice model as $(Lu^{3+})_P(O^{2-}, SiO_2^0)_{Q}$. The calculated phase diagram below 1873 K was in good agreement with experimental data at 1573, 1773 and 1873 K. The calculated Gibbs energies of two intermediate phases Lu₂SiO₅ and Lu₂Si₂O₇, the activity of Lu₂O₃ and SiO₂ and specific heat capacities of intermediate phases agreed well with experimental results of Y₂O₃-SiO₂ system. This tentative study will offer help for the research of single-phase phosphor and related metallurgical slags, refractories, high-temperature superconductivity material systems.

Keywords: phase diagram; Lu₂O₃-SiO₂; thermodynamics; ionic two-sublattice model; CALPHAD; rare earths

As a binary system of BaO-Lu₂O₃-SiO₂ ternary system, the Lu₂O₃-SiO₂ system is of great interest because of the potential application of the intermediate compounds in phosphors^[1–3] and inorganic scintillators^[4,5]. However, the information of phase relationship and thermodynamics of Lu₂O₃-SiO₂ system is insufficient for design and optimization of luminescent materials. Actually, it is very difficult to achieve the real phase equilibria in Lu₂O₃-SiO₂ system due to the slow diffusion rate in solid phases at low temperatures and measure liquidus at very high temperatures. Fortunately, with the help of the CALPHAD approach based on experimental phase diagram and relevant thermodynamic data, it is possible to obtain consistent thermodynamic description of such system from limited experimental information.

On the basis of X-ray phase analysis and measurements of melting points of a series of powdered compositions, a part of Lu₂O₃-SiO₂ phase diagram (Fig. 1) was constructed by Zagumennyi et al.^[6] to improve the performance of Lu₂SiO₅:Ce³⁺ optical ceramic scintillator. In this diagram, the solid and broken lines indicated experimental data and predictions, respectively. The region of phase "S"(solid solution) was surrounded by the fields of two-phase equilibria L+S, Lu₂O₃+S and S+Lu₂Si₂O₇. The maximum temperature of melting point of "S" was

2263 K corresponding to the composition of 51.9 mol.% Lu_2O_3 -48.1 mol.% SiO_2 .

Except for phase diagram, the crystal chemistry of the rare-earth silicates have been summarized by Felsche^[7] in 1973. In the Lu₂O₃-SiO₂ binary system, intermediate compounds are known of composition 1:1 (Lu₂SiO₅), 2:3 (Lu₄Si₃O₁₂), and 1:2 (Lu₂Si₂O₇) at high temperature^[7]. There are five different crystal structures for Lu₂Si₂O₇ compound, in which only C monoclinic form is the thermodynamic stable state^[8]. The melting points of cerium-doped Lu₂SiO₅ and Lu₂Si₂O₇ scintillators have been

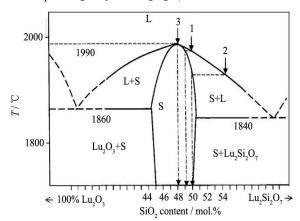


Fig. 1 Partial phase diagram of Lu₂O₃-SiO₂ system^[6]

Foundation item: Project supported by the National Natural Science Foundation of China (51304086), the Science and Technology Landing Plan for Colleges of Jiangxi Province (KJLD14045), Foundation of Science and Technology Pillar Program in Industrial Field of Jiangxi Province (20123BBE50075) and the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology

DOI: 10.1016/S1002-0721(17)60996-7

^{*} Corresponding author: YE Xinyu (E-mail: xinyye@yahoo.com)

measured to be 2373 and 2173 K, respectively^[4]. The phase diagrams for the RE₂O₃-SiO₂ (RE=Lu, Yb, Y) systems are very similar due to the analogous existence of intermediate compounds of disilicate and monosilicate at high temperature^[9] and similarity of physical and chemical properties of rare earth elements Lu, Yb and Y. Owing to the lack of information of the Lu₂O₃-SiO₂ system, some phase diagram and thermodynamic data were chosen from the analogous RE2O3-SiO2 (RE=Yb,Y) binary systems as reference data. For Yb₂O₃-SiO₂ system, the experimental phase diagram including three intermediate phases Yb₂SiO₅, Yb₂Si₂O₇, Yb₄Si₃O₁₂ has been reported by Toropov et al. [9]. For Y₂O₃-SiO₂ system, three intermediate phases Y₂SiO₅, Y₂Si₂O₇, Y₄Si₃O₁₂ were first presented by Toropov and Bondar^[10]. There is a miscibility gap in the liquid phase on the SiO₂-rich side^[10]. However, Y₄Si₃O₁₂ with apatite structure was not confirmed by following studies^[11-13]. Drummond et al.^[13] reported a corrected phase diagram of Y2O3-SiO2 system excluding the apatite phase (Y₄Si₃O₁₂). Calculation results showed that Y₂SiO₅ melts congruently at 2232 K and Y₂Si₂O₇ melts incongruently at 2060 K^[14]. Based on measurements of enthalpy of formation and heat capacity for the solid phases, Fabrichnaya et al.[15] gave a thermodynamic assessment of the Y2O3-SiO2 system and the obtained phase diagram was in good agreement with experimental data.

In our previous work, the BaO-SiO₂ system^[16] and BaO-Lu₂O₃ system^[17] have been thermodynamically assessed. As a part of the series of studies, the Lu₂O₃–SiO₂ system was optimized and calculated in the present work by CALPHAD approach based on the available phase diagram and relevant thermodynamic data of RE₂O₃-SiO₂ (RE=Lu, Yb, Y) binary systems as well as our experimental data of Lu₂O₃-SiO₂ system. The study of the Lu₂O₃-SiO₂ binary system may offer help for the research of single-phase phosphor and related metallurgical slags, refractories, high-temperature superconductivity material systems.

1 Experimental

1.1 Procedure

The samples were synthesized by solid-state reaction in air with high purity raw powders. Lu₂O₃ (99.99%) and SiO₂ (99.99%) were weighed in an appropriate stoichiometric ratio. After thoroughly mixing and grinding in an agate mortar for 2 h, the powders were pressed with 1 MPa to form pellets and fired at 1573, 1773, 1873 K for 10 h. After sintering step, the samples were took out immediately from a heat shock furnace at high temperature and cooled quickly to room temperature in air. All the samples can be removed directly from heat shock furnace under high temperature and cooled

quickly to room temperature in air. The identification of the phases was analyzed by using a PANalytical X-ray diffractometer (Cu K α radiation, λ =0.154187 nm) after grinding samples mentioned above into fine powders.

1.2 Results and discussion

Fig. 2 shows X-ray diffraction patterns of the samples sintered at 1573, 1773 and 1873 K with SiO₂ contents of 45 mol.%, 50 mol.%, 55 mol.%, 60 mol.%, 67 mol.% and 70 mol.%. The phases for all samples constituted with the same ratio did not change from 1573 to 1873 K. Except SiO₂, Lu₂O₃, Lu₂SiO₅ and Lu₂Si₂O₇, no traces from impurity phases were observed. The Lu₂O₃ was found in the composition of 45 mol.% SiO₂-55 mol.% Lu₂O₃(a) samples and SiO₂ were found in the 70 mol.% SiO₂-30 mol.% Lu₂O₃ (f) samples at all experimental temperatures. Two intermediate compounds Lu₂SiO₅ and Lu₂Si₂O₇ were proved to exist at 1573, 1773 and 1873 K with SiO₂ contents at 55 mol.% (c), 60 mol.% (d). Lu₂SiO₅ and Lu₂Si₂O₇ exhibited pure phases when the contents of SiO₂ are 50 mol.% (b) and 67 mol.% (e), respectively. The experimental results of the phase diagram of Lu₂O₃-SiO₂ system are similar to those of the Yb₂O₃-SiO₂ system reported by Toropov et al.^[7] and the Y₂O₃-SiO₂ system of Fabrichnaya et al.^[13]. The existent Lu₂SiO₅ solid solution in the composition range of 45 mol.%-51 mol.% $SiO_2^{[4]}$ was not conformed with our experimental data (Fig. 2(a)). Consequently, Lu₂SiO₅ was treated as the stoichiometric compound instead of solid solution in the present study.

2 Model

2.1 Reference state

As reference states for the Lu₂O₃-SiO₂ binary system, all of the Gibbs energies are given relative to the enthalpy of selected reference states for the elements at 298.15 K and 1.013×10^5 Pa (stable element ${}^0\Delta G_i^{\text{p}}$ (T) reference, SER)

 $^{0}\Delta G_{i}^{\circ}(T)=a+bT+cT\ln T+dT^{2}+eT^{-1}+fT^{3}+gT^{7}+hT^{-9}$ (1) $^{0}\Delta G_{i}^{\circ}(T)$ is the standard molar Gibbs energy of compound i in phase φ (solid state or liquid state) at the absolute temperature T(K). In different temperature ranges, different sets of the coefficients a to h can be used. The last two terms in Eq. (1) are used only outside the ranges of stability, the term gT^{7} is relative to the liquid below the melting point and hT^{-9} to the solid phases above the melting point $^{[18]}$. In the present work, the Gibbs energy functions of pure Lu₂O₃ and SiO₂ were taken from SSUB5 substance database in the Thermo-Calc Software.

2.2 Intermediate phases

Three intermediate phases, Lu₂SiO₅, Lu₂Si₂O₇ and

Download English Version:

https://daneshyari.com/en/article/7697407

Download Persian Version:

https://daneshyari.com/article/7697407

<u>Daneshyari.com</u>