

Available online at www.sciencedirect.com

JOURNAL OF RARE EARTHS, Vol. 35, No. 6, Jun. 2017, P. 602

CO₂ gas sensors based on Yb_{1-x}Ca_xFeO₃ nanocrystalline powders

ZHANG Panpan (张盼盼)¹, QIN Hongwei (秦宏伟)², ZHANG Heng (张 恒)², LÜ Wei (吕 伟)^{1,*}, HU Jifan (胡季帆)^{2,*}

(1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; 2. School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China)

Received 2 March 2016; revised 30 August 2016

Abstract: In this study, the Yb_{1-x}Ca_xFeO₃ ($0 \le x \le 0.3$) nanocrystalline powders were prepared by sol-gel method. We used the method of quantitative analysis to research the gas-sensitive properties for Yb_{1-x}Ca_xFeO₃ to CO₂. Also, we investigated the effects of various factors on gas sensing properties by simple variable method. The doping of Ca could not only decrease the resistance of YbFeO₃, but also enhance its sensitivity to CO₂. When the Ca content *x*=0.2, Yb_{1-x}Ca_xFeO₃ showed the best response to CO₂. The response R_g/R_a to 5000 ppm CO₂ for Yb_{0.8}Ca_{0.2}FeO₃ at its optimal temperature of 260 °C with the room temperature humidity of 28%RH was 1.85. The response and recovery time decreased with an increase of the operating temperature for Yb_{0.8}Ca_{0.2}FeO₃ became shorter, and meanwhile the recovery time was longer. CO₂-sensing response for Yb_{0.8}Ca_{0.2}FeO₃ increased with the increase of relative humidity. The response for Yb_{0.8}Ca_{0.2}FeO₃ in the background of air (with the room temperature humidity of 39%RH) at 260 °C could reach 2.012 to 5000 ppm CO₂, which was larger than the corresponding value (1.16) in dry air.

Keywords: gas sensor; CO₂; perovskite; rare earths

As the primary greenhouse gas, carbon dioxide (CO₂) emitted by factories and human activities, is causing more and more serious global warming problems. Thus, it is of great necessity to seek for effective techniques and methods to detect and control the concentrate of CO₂ in the air^[1]. The problems of global warming promote the researches on the detection of $CO_2^{[2]}$. Up to now, some kinds of CO₂ sensors, such as infrared^[3], surface acoustic wave^[4], solid electrolyte^[5–7], capacitive and resistive^[8–14], have been found. The resistive CO₂ sensor is based on the change of the conductance or resistance of semiconductors when being exposed to CO₂ in the air^[15–20]. According to the report, some composite or single phase oxides can be adopted as the resistive CO₂ sensors^[21–26].

Due to their widely practical applications in multiple fields, perovskite-type compounds (ABO₃) have drawn more and more attention^[27–32]. The general formula of perovskite-type oxides is ABO₃, in which A represents a large cation (usually a rare earth ion), while B refers to a smaller one^[28,33]. In general, many gas sensors based on ABO₃ and its derivatives show high gas-selectivity and great working stability. However, the large resistance of ABO₃ sensors limits their application. Thus, many efforts have been made to promote the sensing behaviors of ABO₃. According to recent finding, the response $S=R_{gas}/R_a$ for La_{0.8}Sr_{0.2}FeO₃ to 4000 ppm CO₂ is 2.0^[1], for Ba-TiO₃ to 10000 ppm CO₂ is 1.2^[34], for LaCrO₃ to 300000 ppm CO₂ is 1.048^[23]. Moreover, it has been reported that

 $La_{0.2}Sr_{0.8}FeO_3$ sensor shows larger CO₂ response in oxygen than in air^[1], indicating that the oxygen adsorbed on the surface of semiconductor may be related to the sensing process of CO₂ in the air. The CO₂ sensing mechanism was initially suggested to be associated with the formation of carbonates in CuO-BaTiO₃ system^[35]. Furthermore, the formation of the carbonation would change the height of potential barrier and result in an increase of resistance of p-type semiconductor oxides.

In this paper, the gas-sensor based on Yb_{1-x}Ca_xFeO₃ could sensitively detect CO₂ gas. Besides, Ca was used to partially replace Yb for improving its microstructure as well as gas sensing performance. This experiment utilized a sol-gel method with annealing temperature at 950 °C for 4 h to prepare nanocrystalline Yb_{1-x}Ca_xFeO₃ sensitive material. Also, their phase composition, resistances and CO₂ gas sensing properties were studied.

1 Experimental

The Yb_{1-x}Ca_xFeO₃ powders were prepared by sol-gel method. Firstly, a mixed solution was prepared at stoichiometric ratio of Yb(NO₃)₃:Ca(NO₃)₂:Fe(NO₃)₃= (1-x):x:1, and the citrate acid was added at a ratio of (Yb³⁺+Ca²⁺+Fe³⁺):(citrate acid)=1:2 into the solution. Besides, the mixture was heated in water bath at 80 °C. Then, 10% (wt.%) polyethylene glycol (PEG; molecular weight 20000) was added into the solution through con-

Foundation item: Project supported by the National Natural Science Foundation of China (51272133, 51472145, 51472150)

^{*} Corresponding authors: LÜ Wei, HU Jifan (E-mail: lwei@sdu.edu.cn, hujf@sdu.edu.cn; Tel.: +86-531-88392969; +86-531-88361560) DOI: 10.1016/S1002-0721(17)60953-0

stant stirring. The solution was continuously stirred for several hours until the sol was formed. Furthermore, sol was dried into a gel, and the obtained gel was completely dried into pieces in a baking box. Subsequently, the pieces were ground to powder sample. Lastly, the samples were annealed in an oven at 950 °C for 4 h. Also, the obtained powder was characterized by X-ray diffraction (XRD) to determine its phase composition, and the microstructure was observed by a field emission scanning electron microscope (FE-SEM).

The prepared powders were mixed with an amount of adhesive (deionized water was utilized in this paper) until it became a paste. Furthermore, the mixture was packed into an alumina ceramic tube where there are two Au electrodes on both sides. The size of ceramic tube was about 1.2 mm in diameter and 4 mm in length, attached with a pair of Au electrodes and Pt wires. Moreover, a Ni-Cr heating wire was inserted into the ceramic tube. For improving their repeatability and stability, the sensors were dried at about 100 °C for 6 h. Fig. 1 shows the photo of sensor we prepared and the structure diagram of sensor. Subsequently, the sensors were aging 48 hours on the aging equipment in air. In the end, we tested the gas-sensing properties of Yb_{1-x}Ca_xFeO₃ in a temperature ranging from 160 to 340 °C.

2 Results and discussion

As shown in Fig. 2, the X-ray diffraction patterns of $Yb_{1-x}Ca_xFeO_3$ (*x*=0, 0.1, 0.2 and 0.3) powders annealed at 950 °C for 4 h. From the figure, it can be seen that the $Yb_{1-x}Ca_xFeO_3$ (*x*=0, 0.1, 0.2 and 0.3) powders show orthorhombic perovskite structure, suggesting that the Yb^{3+} was partially substituted by Ca^{2+} in the YbFeO₃ crystal lattice. Table 1 lists the corresponding crystalline parameters of $Yb_{1-x}Ca_xFeO_3$ (*x*=0, 0.1, 0.2 and 0.3). Ac-

Fig. 1 (a) Photo of the sensor we prepared; (b) the structure diagram of sensor

Fig. 2 X-ray diffraction patterns of Yb_{1-x}Ca_xFeO₃ (*x*=0, 0.1, 0.2 and 0.3) powders

Table 1 Corresponding lattice parameters of Yb_{1-x}Ca_xFeO₃ for x=0, 0.1, 0.2 and 0.3

x	a/nm	<i>b</i> /nm	c/nm	$V/10^3 {\rm nm}^3$
0	0.50054	0.59446	0.76276	0.22696
0.1	0.50129	0.59482	0.76229	0.22750
0.2	0.50218	0.59507	0.76385	0.22826
0.3	0.50462	0.59630	0.76521	0.23026

cording to the table, it can be found that the values of unit cell increase with the increase of Ca content x. This results from the fact that the radius of $Ca^{2+}(100 \text{ pm})$ is larger than that of Yb³⁺ (86.8 pm). We investigated the morphology of the obtained $Yb_{1-x}Ca_xFeO_3$ (x=0, 0.1, 0.2) and 0.3) samples with FE-SEM technique. The SEM micrograph on the surfaces of the $Yb_{1-x}Ca_xFeO_3$ (x=0, 0.1, 0.2 and 0.3) powders are shown in Fig. 3. It can be seen that the morphology of the prepared $Yb_{1-x}Ca_xFeO_3$ (x=0, 0.1, 0.2 and 0.3) samples are nanoparticles with somewhat agglomeration. Besides, the average grain sizes D were estimated as about 40, 38, 36.4 and 36 nm for x=0, 0.1, 0.2 and 0.3. The crystallite size decreases with the increase of the doping amount x, indicating that during the high temperature treatment, Ca²⁺ doping might prevent the YbFeO3 particle size from growing.

Fig. 4 shows the Ca content *x* dependence of resistance of Yb_{1-x}Ca_xFeO₃ (*x*=0, 0.1, 0.2 and 0.3) sensors at different operating temperatures (200, 240, 260 and 280 °C) in the background of ambient air (with the room temperature humidity of 28%RH). It can be seen that the resistances of Yb_{1-x}Ca_xFeO₃ (*x*=0, 0.1, 0.2 and 0.3) sensors decrease with the increase of temperature. Also, with an increase of Ca content *x*, the resistances of sensors firstly decrease, undergo a minimum at approximately *x*=0.1, and then increase again.

When the Yb³⁺ in YbFeO₃ is partly replaced by Ca²⁺, the following compensation processes would occur in Yb_{1-x}Ca_xFeO₃. To be specific, the first process is electrical valence compensation, which is dominated at low Ca concentration. When Yb³⁺ is partly replaced by Ca²⁺ in Download English Version:

https://daneshyari.com/en/article/7697581

Download Persian Version:

https://daneshyari.com/article/7697581

Daneshyari.com