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Abstract

A new conservative discrete ordinate method for nonlinear model kinetic equations is proposed. The conservation property with
respect to the collision integral is achieved by satisfying at the discrete level approximation conditions used in deriving the model collision
integrals. Additionally to the conservation property, the method ensures the correct approximation of the heat fluxes. Numerical exam-
ples of flows with large gradients are provided for the Shakhov and Rykov model kinetic equations.
� 2007 Published by Elsevier Ltd.

1. Introduction

Correct description of rarefied gas flows is based on the
Boltzmann kinetic equation for the molecular velocity dis-
tribution function. Since this integro-differential equation
is exceedingly complicated due to the presence of the non-
linear multidimensional collision integral much attention
has been given to simpler model kinetic equations. These
equations are constructed by replacing the exact collision
integral by an approximate model collision integral. Exam-
ples include the Krook or BGK [6], Holway [12] and Shak-
hov [26,28] model equations for monatomic gases as well as
Holway [12] and Rykov [24] model equations for diatomic
gases.

Numerical solution of kinetic equations requires the use
of conservative methods suitable in a broad range of Knud-
sen numbers (including transitional and low Knudsen num-
bers) and for both steady and unsteady flow regimes. In
recent years considerable progress has been made in devis-
ing such methods for the kinetic equation with the exact
Boltzmann collision integral [7,23,5]. For model equations
the situation is less clear. Conservative discrete ordinate
methods proposed for simple monatomic BGK and Holway
model equations [22,11] cannot be extended directly to the
Shakhov and Rykov models. A rather sophisticated correc-
tion procedure was applied in [10] to the Shakhov model

collision integral at each time step in such a way as to satisfy
the conservation property. Its generalization to other mod-
els has not been reported. No conservative method has so
far been developed for diatomic models.

The purpose of this paper is to present an exceedingly
simple and universal approach to the construction of con-
servative discrete ordinate methods for model kinetic equa-
tions. The approach is an extension of [33] and is based on
the approximation of the constrains used in deriving the
model equations. Therefore, it can be used for virtually
any model kinetic equation. We provide a detailed explana-
tion of the idea as applied to the Shakhov model equation
and then extend it to the Rykov model equation.

We consider two numerical examples: a cylindrical Cou-
ette flow and a supersonic transverse flow over a plate,
both for a wide range of Knudsen numbers from free-
molecular to near-continuum regime. The presented results
illustrate the sensitivity of the method to the choice of the
molecular velocity mesh as well as provide a study of aero-
dynamic properties of the plate and distribution of the
macroscopic parameters.

2. Monatomic gases

2.1. Construction of model equations

For monatomic gases a general approach to the con-
struction of model kinetic equations was proposed in
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[25,28] and is based on the idea of approximating the exact
Boltzmann kinetic equation in terms of momentum equa-
tions. In other words few first momentum equations should
coincide for the model and exact kinetic equations. As a
result, a sequence of model kinetic equations can be devel-
oped by increasing the order of moments for which the
approximation condition holds.

Let us write the model kinetic equation for the velocity
distribution function f in the following form:

of
ot
þ n

of
or
¼ Qðf ; n; aÞ: ð1Þ

Here n ¼ ðn1; n2; n3Þ is the molecular velocity vector, t is
time, r ¼ ðx1; x2; x3Þ is the spatial coordinate, a is an un-
known vector of macroscopic parameters which depends
on the chosen model equation. Since the differential parts
of the exact and model equations are the same, the approx-
imation condition means that first few moments J/ of exact
collision integral Jðf ; f Þ coincide with the first few mo-
ments of the model collision integral Qðf ; a; nÞ:Z

/Qðf ; a; nÞdn ¼
Z

/Jðf ; f Þdn ¼ J/; ð2Þ

where

/ ¼ 1; ni; n
2; ninj; ninjnk; . . . :

Alternatively one can use

/ ¼ 1; vi; v2; vivj; vivjvk; . . . ; v ¼ n� u:

As is common in construction of model kinetic equations
for the monatomic gas it is assumed that the approxima-
tion condition (2) should be satisfied for the Maxwellian
molecules only. Then the moments J/ can be evaluated
analytically and we can express the vector a via the inte-
grals of the velocity distribution function:

UðaÞ ¼
Z

bðnÞf dn; ð3Þ

where U is a certain function of macroscopic parameters
and bðnÞ is a vector function of the molecular velocity n.

2.2. The model of Shakhov

The Shakhov model kinetic equation is a generalization
of the Krook model equation in that the approximation
condition (2) is satisfied not only for 1, ni, n2, ninj, but also
for nin

2. This ensures the correct relaxation of both the heat
flux and stresses, leading thus to the correct continuum
limit in the case of small Knudsen numbers. In particular,
the model gives the correct Prandtl number. Comparisons
of different monatomic model equations with experimental
data and the finite-difference solution of the Boltzmann
equation with the exact collision integral shows the Shak-
hov model to be more accurate than the BGK and Holway
models [38,30].

In the rest of the paper we use the non-dimensional form
of the kinetic equations in which non-dimensional spatial

variable r, time t, number density n, velocities u and n, tem-
perature T, viscosity l, heat flux q and distribution func-
tion f are given by

r0 ¼ r
L
; t0 ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffi
2RT1
p

L
; n0 ¼ n

n1
;

u0 ¼ uffiffiffiffiffiffiffiffiffiffiffiffi
2RT1
p ; n0 ¼ nffiffiffiffiffiffiffiffiffiffiffiffi

2RT1
p ; T 0 ¼ T

T1
;

l0 ¼ l
l1

; q0 ¼ q

mn1ð2RT1Þ3=2
; f 0 ¼ f

n1ð2RT1Þ�3=2
:

ð4Þ

Here L is a typical spatial scale of the problem, R is the gas
constant, n1, T1 – some characteristic values of gas den-
sity and temperature; m is the molecule mass, k1 is the
mean free path related to l1 by

l1 ¼
5

16
mn1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRT1

p
k1:

Below we shall use the conventional notation for all vari-
ables meaning the non-dimensional quantities.

In the non-dimensional form the Shakhov model colli-
sion integral is given by [26,28]

Qðf ; n; aÞ ¼ mf þ � mf ; m ¼ 8

5
ffiffiffi
p
p 1

Kn
nT
l
;

f þ ¼ fM 1þ 4

5
ð1� PrÞ 2qv

nT 2

v2

T
� 5

2

� �� �
;

fM ¼
n

ðpT Þ3=2
exp � v2

T

� �
:

ð5Þ

Here fM is the locally Maxwellian function, Kn ¼ k1=L and
Pr are the Knudsen and Prandtl numbers, respectively. The
vector of unknown parameters in the model collision inte-
gral a ¼ ðn; u; T ; qÞT containing number density n, temper-
ature T and vectors of gas velocity u and heat flux q can
be calculated as

UðaÞ ¼ n; nu;
3

2
nT þ nu2; 2q

� �
¼
Z
ð1; n; n2; vv2Þf dn: ð6Þ

Since the expression for f+ contains the third-order polyno-
mial of n the distribution function f may become negative
at the tails. Although a possible loss of positivity is a draw-
back from the theoretical point of view, it does not affect
the robustness of the model in practical applications be-
cause f ! 0 as jnj ! 1. For example, see [3] for the
numerical study of the structure of exceedingly strong
shock waves (Mach numbers up to 100) and [34] for calcu-
lation of the hypersonic transverse flow over a cold plate
with free-stream Mach numbers up to M1 ¼ 30. More-
over, according to the Godunov theorem [9]. second-order
advection schemes with linear operators often used in prac-
tice [1,34] are not monotone and may generate the negative
values of f even for the BGK model, further diminishing
the importance of strict theoretical positivity.

The H theorem for the Shakhov model can be proven
only for flows with small departures from equilibrium [28].
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