EISEVIER

JOURNAL OF RARE EARTHS, Vol. 34, No. 12, Dec. 2016, P. 1228

Multiferroic and in-plane magnetoelectric coupling properties of BiFeO₃ nano-films with substitution of rare earth ions La³⁺ and Nd³⁺

GUO Kaixin (郭凯鑫)¹, ZHANG Rongfen (张荣芬)¹, HE Tengpeng (何腾鹏)¹, KONG Handong (孔汉东)², DENG Chaoyong (邓朝勇)^{1,*}

(1. Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; 2. Yangming Collage, Guizhou University, Guiyang 550025, China)

Received 19 April 2016; revised 1 September 2016

Abstract: Single-phase multiferroic BiFeO₃ and Bi_{0.9}(La/Nd)_{0.1}FeO₃ (doped with rare earth ions La³⁺ and Nd³⁺) films grown on (111)-Pt/Ti/SiO₂/Si substrate were prepared via sol-gel method and a subsequent rapid thermal process. The phase composition, microstructure, ferroelectric, dielectric, ferromagnetic properties were investigated, and meanwhile, the in-plane magnetoelectric (ME) coupling effects of the films were reported and studied for the first time in this work. Structural characterization by X-ray diffraction and scanning electron microscopy showed that both BiFeO₃ and Bi_{0.9}(La/Nd)_{0.1}FeO₃ exhabited a rhombohedral structure with (111) preferred orientation. The results of the physical properties indicated that the introduction of rare earth ions improved significantly the polarization, magnetization and dielectric properties than the undoped BiFeO₃ crystals, and it enhanced effectively the in-plane ME coupling (the ME coupling coefficient α_E increased from 0.13 in the pure BiFeO₃ to 0.21 in Bi_{0.9}La_{0.1}FeO₃ and 0.34 V/(Oe·cm) in Bi_{0.9}Nd_{0.1}FeO₃). The mechanism of these phenomena was investigated systematically.

Keywords: bismuth ferrite; substitution; rare earth ions; ferroelectricity; dielectricity; ferromagnetism; magnetoelectric coupling

New multi-function materials, possessing not only many kinds of physical and chemical effects but couplings to realize mutual regulation and control, have become hotspots in academic and industrial fields nowadays. Multiferroic materials are one of the most typical multi-function materials, which own simultaneously two or more types of the ferroelectricity, the ferromagnetism, the ferroelasticity, the ferrotoroidicity, and present couplings between any two ferroic properties^[1]. For this reason, they have arrested considerable attention at present. Recently, focuses of researching or investigating are all on single-phase and composite multiferroic materials with their ferroelectric, ferromagnetic and magnetoelectric (ME) properties, which are used possibly for the design of novel storage devices.

BiFeO₃ (BFO), owning the ferroelectricity and antiferromagnetism, is a representative single-phase multiferroic materials, which has lately received widespread attentions since that it presents an extra-high ferroelectricity while epitaxially growing on single-crystal perovskite substrates^[2]. The preparation methods of BFO films primarily include pulsed laser deposition (PLD)^[3,4], hydrothermal synthesis^[5] and sol-gel has been reported scarcely. But either way, BFO film in the pure phase

shows large leakage current, an endogenetic fatal defect stemmed from oxygen vacancies for the fluctuations of Fe³⁺[6]. However, its performances will ameliorate obviously by doping technique^[7]. Common practices now are embracing substitutions of La³⁺, Sm³⁺ at A-site^[8-10], Ti⁴⁺, Mn⁴⁺[11,12], Cr³⁺[13] at B-site in ABO₃ structures, which will improve properties of films and lays a foundation for further investigating the microcosmic mechanism of multiferroics.

Recent studies on BFO and its doping series still focus on their ferroelectricity and dielectricity, while, to the best of our knowledge, there is no documented research on the actual measured in-plane ME coupling of them due to their complexity. In this work, we synthesized BFO nano-films and the films doped with 10 mol.% La³⁺ and Nd³⁺ ions for the optimal performances than the 5 mol.%, 15 mol.% and 20 mol.% control groups on the (111)-Pt/Ti/SiO₂/Si substrate via sol-gel method and a subsequent rapid thermal treatment process. Not only the phase composition, the microstructures, the electric and magnetic effects, but also the in-plane ME coupling properties of both pure BFO and Bi_{0.9}(La/Nd)_{0.1}FeO₃ films were studied. And meanwhile, the influences of dopants on dielectric properties, polarization and mag-

Foundation item: Project supported by National Natural Science Foundation of China (51462003), Science Research Fund of Guizhou Province, China (2015-4006, 2014-001, 2014-7612), the Introduced Talents Funds of Guizhou University (2014-30) and Master's Innovation Funds of Guizhou University (2016065)

* Corresponding author: DENG Chaoyong (E-mail: cydeng@gzu.edu.cn; Tel.: +86-851-8290870)

DOI: 10.1016/S1002-0721(16)60158-8

netization behaviors of the doped sample films were investigated in detail according to the tolerance theory and defect chemistry, providing references for further study of coupling mechanism, applications and devices design.

1 Experimental

1.1 Synthesis

Precursors of BiFeO₃ and Bi_{0.9}(La/Nd)_{0.1}FeO₃ were synthesized by sol-gel and rapid thermal process (RTP). Raw materials were Bi(NO₃)₃·5H₂O, Fe(NO₃)₃·9H₂O, La(NO₃)₃·5H₂O and Nd(NO₃)₃·6H₂O. Ethylene glycol monomethyl ether (C₃H₈O₂) and acetic anhydride (C₄H₆O₃) acted as the solvent and the high performance water removal agent, respectively. Note that the content of bismuthate must excess 10 mol.%–15 mol.% to supply its volatilization loss during annealing. These precursors should be preserved in a dark-brown color glass in the dark. The films were fabricated on the (111)-Pt/Ti/SiO₂/ Si substrate by a spin-coating method at 4000 r/min for 30 s and dehydrated at 200 °C for 300 s. The residual organics were removed at 450 °C for 300 s and crystallized at 600 °C for 420 s by RTP process. Finally, Pt electrodes were deposited by magnetron sputtering method on the surface of films using a metal mask with a diameter of 0.2 mm and heated at 500 °C for 300 s before measurements to improve the adhesion between the substrate and ferroelectric films.

1.2 Characterization

The crystalline phases and crystal structure of the films were determined by an X-ray diffractometer (XRD, model D/max-2500 V, Rigaku Co., Japan) with Cu K α monochromatic radiation (λ =0.154 18 nm) at a scanning speed of 2(°)/min in step of 0.02°. The microstructure of the films was obtained by a model S5500 scanning electron microscope (SEM, Hitachi Co., Japan). The ferroelectric properties of the samples were analyzed by a model multiferroic 200 V Test System (Radiant Technologies). The dielectric properties were measured by an impedance analyzer (Agilent 4294A) in the frequency range from 20 Hz to 1 MHz.

The ferromagneticity was obtained by a physical property measurement system (PPMS, Quantum Design). The ME measurement of these films was performed in an open circuit condition. The film samples were electrically connected with silver wires bonded on the top Pt electrode and the substrate. A dc bias magnetic field $H_{\rm dc}$ is superimposed by a small ac magnetic field δH in parallel. The magnetoelectric coupling coefficients $\alpha_{\rm E}$ was calculated from the dielectric data using the relation [14],

$$\alpha_{\rm E} = \frac{\delta E}{\delta H_{\rm ac}} = \frac{\delta V}{t \cdot \delta H_{\rm ac}} \tag{1}$$

where δV is the induced ME voltage signal collected by a lock-in amplifier (SRS, model SR830), t is the thickness

of the films and was measured by a profilometer (BRUKER Dektak XT), and $\delta H_{\rm ac}$ is the alternating magnetic field signals collected by a Gauss/Tesla meter (REF, model F1218). All measurements were performed at room temperature.

2 Results and discussion

2.1 Phase identification and SEM analysis

Fig. 1 shows the XRD patterns of BiFeO₃ and Bi_{0.9}(La/Nd)_{0.1}FeO₃ (BLF or BNF) films according to the inorganic crystal structure database (ICSD) 72-2035. All specimens exhibit a rhombohedral structure with (111) orientation. No any other intermediate phases like Bi₂Fe₄O₉ has been found because the ionic radii of lanthanides are similar to that of Bi3+ (demonstrated in Table 1^[15]). In fact, their extranuclear strucure of the outermost two layers exhibits high similarity^[16]. The (111) and $(\overline{1}11)$ peaks overlap completely and the intensity remains roughly the same, while the (110) and (110) peaks also overlap completely and the intensity is increasing gradually. Since that the dopants with different ionic radius could cause the distortion of crystal lattice to various degrees and even change their syngony^[17]. All films show the (111) preferred orientation for the (111)-Pt/Ti/SiO₂/Si substrate.

The scanning electron microscopy (SEM) micrographs of the films are shown in Fig. 2. The average grain sizes calculated by Cottrell's method^[18] are given in Table 2. Clearly, the lattice parameters and average grain sizes all decrease after the introduction of rare earth dopants. Fig. 2(a) shows the representative microstructure of BFO and the inset is an AFM image of BFO. The elliptic crystalline grains in the pure BFO film are legible, homogeneous and possess a superior compactness. The shapes of

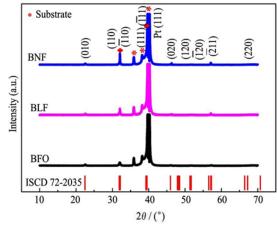


Fig. 1 XRD patterns of BFO and its doping series

Table 1 Radius of common ions quoted from Lange's Chemistry Handbook, Version 15^[15]

Ion	Bi ³⁺	Fe ³⁺	O ²⁻	La ³⁺	Nd ³⁺
Radius/nm	0.096	0.065	0.132	0.112	0.106

Download English Version:

https://daneshyari.com/en/article/7698118

Download Persian Version:

https://daneshyari.com/article/7698118

<u>Daneshyari.com</u>