Contents lists available at ScienceDirect

Marine Chemistry

journal homepage: www.elsevier.com/locate/marchem

Phytoplankton as a temperate marine source of brominated methanes

Ayato Shibazaki, Keisuke Ambiru, Michiko Kurihara, Hideyuki Tamegai, Shinya Hashimoto*

Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

ARTICLE INFO

Article history: Received 2 July 2015 Received in revised form 24 February 2016 Accepted 21 March 2016 Available online 29 March 2016

Keywords: Biological production Bromoform Diatoms Cyanobacteria

ABSTRACT

Bromoform (CHBr₃) has an important role in transporting bromine from the ocean to the atmosphere, and released bromine catalyses ozone depletion. In temperate ocean waters, a number of studies have observed or presumed CHBr₃ production. Here, we studied the ability of marine phytoplankton to produce CHBr₃ in cultures of temperate phytoplankton. A temperate marine diatom and a cyanobacterium, *Ditylum brightwellii* CCMP 358 and *Synechococcus* sp. CCMP 1334, respectively, were incubated at 24 °C and the concentrations of brominated methanes in the cultured samples were determined using purge and trap gas chromatograph-mass spectrometry. The axenic cultures of the diatom exhibited a remarkable rate of CHBr₃ production, ~200 nmol (g chlorophyll a)⁻¹ h⁻¹, which was several times higher than that for cold water diatoms reported previously. The cyanobacterium also produced CHBr₃, with a production rate of ~1 nmol (g chlorophyll a)⁻¹ h⁻¹, shows that two diverse phytoplankton can produced in the culture of the *Synechococcus* sp. An incubation experiment with ¹³CHBr₃ revealed that there was no ¹³CHBr₃ degradation (or the formation of ¹³CHBr₂Cl and ¹³CHBrCl₂) in the cultures of these two phytoplankton, and these results suggested that both diatoms and cyanobacteria could produce chlorinated methanes. Our results suggest that brominated methanes such as CHBr₃ are produced by temperate phytoplankton and that phytoplankton is a significant source of CHBr₃ are produced by temperate phytoplankton and that phytoplankton is a significant source of CHBr₃ are produced by temperate phytoplankton and that phytoplankton is a significant source of CHBr₃ are produced by temperate phytoplankton and that phytoplankton is a significant source of CHBr₃ are produced by temperate phytoplankton and that phytoplankton is a significant source of CHBr₃ are produced by temperate phytoplankton and that phytoplankton is a significant source of CHBr₃ are produced by temperate phytoplankton and t

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Short-lived bromomethanes such as bromoform (CHBr₃) have important roles in transporting bromine from the ocean to the atmosphere (Carpenter and Liss, 2000; Quack et al., 2004). CHBr₃ releases bromine into the troposphere and the stratosphere via photolysis, and released bromine catalyses ozone depletion (Read et al., 2008). In terms of the contribution of very short-lived substances to stratospheric bromine content, CHBr₃ and dibromomethane (CH₂Br₂) are thought to be the two most significant compounds (Aschmann and Sinnhuber, 2013). Observations of CHBr₃ distribution in the open ocean have shown that higher concentrations of CHBr₃ are present over tropical and warm ocean regions (e.g., Quack et al., 2004; Ziska et al., 2013). A modelling study showed that open oceanic emission of CHBr3 made a notable contribution to the bromine distribution in the troposphere and that the global emission distribution of CHBr₃ classifies tropical and warm areas as significant sources of CHBr₃ (Liang et al., 2010; Ordóñez et al., 2012). In addition, the bottom-up emission estimate for CHBr₃ using the HalOcAt (Halocarbons in the Ocean and Atmosphere) database showed that hot spots for emissions of CHBr₃ were located in the equatorial region (Ziska et al., 2013).

As for the sources of CHBr₃, marine macroalgae have been suggested to generate CHBr₃ in many previous studies. For example, high

* Corresponding author. *E-mail address:* shinya-h@chs.nihon-u.ac.jp (S. Hashimoto). It has been reported that di- and tri-halogenated methanes such as ${\rm CHBr}_3$ may be produced indirectly from haloperoxidase activity,

concentrations of CHBr₃ have been observed in algae beds in the Eastern Arctic Ocean (Dyrssen and Fogelqvist, 1981); elevated levels of CHBr₃,

CHBr₂Cl, CHBrCl₂, CH₂Br₂, and CHCl₃ were reported in beds of brown

seaweed *Laminaria digitata* in the west coast of Scotland (Nightingale et al., 1995); and CHBr₃ production was observed in temperate marine

algae in the coastal east Atlantic (Carpenter and Liss, 2000). Macroalgae

produce halogenated organic compounds (reviewed by La Barre et al.,

2010) and release volatile halogenated organic compounds, such as

CHBr₃ (e.g., the brown algae Laminariales (kelp), the red algae

Rhodymenia californica, and green algae *Ulva* sp.: Manley et al., 1992:

and the brown algae Dictyosyphon foeniculaceus: Laturnus, 1996;

Carpenter and Liss, 2000). With respect to the production of CHBr₃

by microalgae phytoplankton, CHBr₃ production by cold water diatoms

such as Porosira glacialis (CCMP 651, not axenic), Nitzschia sp.

(Tokarczyk and Moore, 1994; Moore et al., 1996) and Thalassiosira sp.

(measurement of bromocarbon production in cultures with and

without antibiotic treatment, Hughes et al., 2013) and CHBr₃ produc-

tion by natural assemblages of ice algae (Sturges et al., 1992) have

been reported. In a culture study on temperate marine cyanobacteria,

no production of either CHBr3 or CH2Br2 was observed in the cultures

of either *Prochlorococcus marinus* (CCMP 2389) or *Synechococcus* sp. (CCMP 2370) (Hughes et al., 2011). To date, only a limited number of

marine phytoplankton from culture collections have been studied in

regard to their production of bromocarbons.

utilizing H₂O₂ as a substrate, in macroalgae, phytoplankton, fungi, and bacteria (Manley, 2002; Winter and Moore, 2009). With respect to the haloperoxidase activity in cyanobacteria, Johnson et al. (2011) extracted a protein with a capacity for bromoperoxidase activity from axenic cultures of Synechococcus. Recently, both vanadium-dependent bromoperoxidase activity and CHBr₃ production were observed in a culture of Synechococcus (strain CC9311), whereas no production of CHBr₃ was found in the cultures of a mutant strain of CC9311 in which the gene for bromoperoxidase was disrupted (Johnson et al., 2015). Hill and Manley (2009) reported that the release of reactive bromine from diatoms and reaction with dissolved organic matter in seawater may contribute to the production of CHBr₃ in the tropical ocean. The production of CHBr₃ in seawater in reactions involving bromoperoxidase and H₂O₂ has been reported; CHBr₃ was produced from the chemical reaction between dissolved organic matter in seawater and the hypobromous acid released by bromoperoxidase (Lin and Manley, 2012). However, in that report, the concentration of added H_2O_2 was about 1000-fold greater than that of H_2O_2 typically present in bulk seawater, though the levels of H₂O₂ could possibly be higher in the apoplast than in the surrounding seawater (Lin and Manley, 2012).

Reifenhäuser and Heumann (1992) measured the concentrations of CHBr₃, CH₂Br₂, CHBr₂Cl, and CHBrCl₂ in seawater near the Antarctic Peninsula, and found good correlations among different bromocarbons e.g., the concentrations of CHBr₃ were associated with those of CH₂Br₂ – suggesting that these bromocarbons have a similar biological source in seawater. High concentrations of CHBr3 were observed in coastal seawater of the Southern Ocean and ice algae were suggested to be the source of CHBr₃ in this region (Carpenter et al., 2007). Seasonal changes of CHBr₃ and CH₂Br₂ were observed in seawater in a coastal bay on the western Antarctic Peninsula, and the highest concentrations of CHBr₃ and CH₂Br₂ were found to correspond with microalgal bloom (Hughes et al., 2009). In coastal seawaters of the western Antarctic Peninsula, higher concentrations of CHBr₃ (mean: 122 pmol L^{-1}) were observed in seawater collected during the diatom bloom compared to those (mean: 42.9 pmol L^{-1}) in seawater collected under non-bloom conditions, whereas CH₂Br₂ concentrations were not significantly different between seawaters collected during the diatom bloom and those collected during non-bloom conditions (Hughes et al., 2012). With respect to the ratio of CH₂Br₂ to CHBr₃ in seawater in the northeast Atlantic and tropical eastern Atlantic Ocean, a lower ratio of CH₂Br₂ to CHBr₃ was observed in coastal areas close to seaweed sources, and the concentration ratio of CH₂Br₂ to CHBr₃ was found to be dependent on both the concentration and location (Carpenter et al., 2009). Hughes et al. (2009) showed that the ratio of CH₂Br₂ to CHBr₃ in seawater was also dependent on the microalgal bloom stage in a coastal bay on the western Antarctic Peninsula.

From the measurements of CHBr₃ distribution in the ocean, Quack et al. (2007) reported that the concentrations of CHBr₃ in seawater were not associated with high chlorophyll concentrations in upwelling areas in the temperate Atlantic Ocean (Quack et al., 2007). However, in contrast to the chlorophyll concentrations, it has been reported that the production of brominated gases such as CHBr₃ in the upwelling areas was significantly correlated with low concentrations of indicator pigments for diatoms or cyanobacteria (Quack et al., 2007). An association between CHBr₃ production and cyanobacterial blooms has also been reported, and the production of CHBr₃ has been suggested to result from cyanobacterial production in the Baltic Sea (Karlsson et al., 2008). In a related study, field research into the spatial and temporal trends of brominated compounds in seawater suggested that brominated compounds such as CHBr₃ could be released from the detritus derived from the Trichodesmium bloom in the coastal eastern Arabian Sea (Roy et al., 2011). In addition, it has been reported that the production of CHBr₃ and CH₂Br₂ may be attributable to phytoplankton species in the open ocean (Liu et al., 2013).

Studies on modelling CHBr₃ distribution in the ocean have assumed a relationship between CHBr₃ production and phytoplankton biomass (Hense and Quack, 2009; Palmer and Reason, 2009). In addition, phytoplankton marker pigments such as chlorophyll *b*, chlorophyll *c*3, fucoxanthin, diatoxanthin, pyrophaeophorbide *a* and zeaxanthin were related to the distribution of CHBr₃ based on the observation of halocarbons and phytoplankton pigments in surface seawater in the tropical North East Atlantic, including upwelling areas (Hepach et al., 2014). To date, however, direct evidence of the production of CHBr₃ by temperate marine phytoplankton has not been reported.

In this study, we describe the measurements of CHBr₃, CHBr₂Cl, CHBrCl₂ and CH₂Br₂ concentrations in axenic cultures of a temperate marine diatom, *Ditylum brightwellii* CCMP 358, and a cyanobacterium, *Synechococcus* sp. CCMP 1334, and calculate the production rate of brominated methanes in culture. In the modern ocean, diatoms account for approximately 40% of the net primary production and are one of the main phytoplankton groups that play a major role in carbon cycling (Falkowski et al., 2004). *Synechococcus* is also an abundant representative of phytoplankton and contributes significantly to primary production in the ocean (Li, 1994; Zwirglmaier et al., 2008). Finally, in the case of CHBr₃, we also measured the degradation of this compound by the two phytoplankton by adding ¹³CHBr₃ to the cultures and measuring changes in its concentration.

2. Experimental

2.1. Phytoplankton strains and growth conditions

The temperate marine diatom (D. brightwellii CCMP 358, originating from the Gulf of Mexico) and unicellular marine cyanobacteria (Synechococcus sp. CCMP 1334, from the Sargasso Sea) were obtained from the Provasoli-Guillard National Center for Marine Algae and Microbiota (NCMA (formerly the CCMP), Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA). According to the NCMA guidelines, suitable incubation temperatures for these two phytoplankton range from 22 °C to 26 °C. Glass culture vessels (conical flasks made of gas-tight borosilicate; Pyrex) sealed with ground glass caps (gas-tight borosilicate; Pyrex) containing autoclaved f/2 or f/2-Si media (1500 mL, prepared in 0.2 µm filtered, aged seawater) for the D. brightwellii or Synechococcus sp., respectively, were assembled (Guillard and Ryther, 1962). NaHCO₃ (0.6 g L^{-1}) was added to the cultures for D. brightwellii. The initial headspace in the vessels was approximately 840 mL. Following the inoculation with D. brightwellii, the culture was incubated at 24 \pm 0.2 °C with a light/dark cycle of 14/10 h and a light intensity of 120 μ mol photons m⁻² s⁻¹ provided by full-spectrum daylight via a Vita-Lite fluorescent lamp (Naturallighting.com, Dickinson, TX, USA). The cultures of the Synechococcus sp. were also incubated at 24 \pm 0.2 °C, but the light/dark cycles (12/12 h) and light intensity (80 μ mol photons m⁻² s⁻¹) were slightly different. A flask containing only the medium (not inoculated with phytoplankton) was used as a control for each phytoplankton. Sterile techniques were used at all times and the cultures were handled on a clean bench (SC-13FAG; Dalton Corp., Tokyo, Japan).

2.2. Time-course experiment and measurement of brominated methanes in cultured samples

To obtain the time courses of brominated methane concentrations in the cultures of phytoplankton, the levels of $CHBr_3$, $CHBr_2Cl$, $CHBrCl_2$ and CH_2Br_2 were measured in the phytoplankton cultures for 32–35 days. Phytoplankton growth was monitored by measuring chlorophyll *a* (chl. *a*) during the culture period. For each species two replicate cultures were grown in separate flasks. At intermittent intervals (several days), aliquots of phytoplankton cultures were sampled from near the base of the glass culture vessels by a gas-tight glass syringe with a section of the Tygon tubing for brominated methanes analysis (100 mL) and pH and chl. *a* measurement (10 mL). At each sampling, we removed the cap of the glass culture vessel and performed the sampling within Download English Version:

https://daneshyari.com/en/article/7699167

Download Persian Version:

https://daneshyari.com/article/7699167

Daneshyari.com