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Università di Lecce, Dipartimento di Ingegneria dell�Innovazione, via Monteroni, 73100 Lecce, Italy

Received 28 June 2004; received in revised form 14 February 2005; accepted 25 April 2005
Available online 24 August 2005

Abstract

Dense gas dynamics studies the dynamic behavior of gases in the thermodynamic region close to the liquid–vapor critical point,
where the perfect gas law is no longer valid, and has to be replaced by more complex equations of state. In such a region, some fluids,
known as the Bethe–Zel�dovich–Thompson fluids, can exhibit non-classical nonlinearities, such as expansion shocks, and mixed
shock-fan waves. In the present work, the problem of choosing a suitable numerical scheme for dense gas flow computations is
addressed. In particular, some extensions of classical Roe�s scheme to real gas flows are reviewed and their performances are eval-
uated for flow problems involving non-classical nonlinearities. A simplification to Roe�s linearization procedure is proposed, which
does not satisfy the U-property exactly, but significantly reduces complexity and computational costs. Such simplification introduces
an additional error O(dx2), with dx the mesh size, with respect to the first-order accurate Roe�s scheme, and O(dx6) with respect to its
higher-order MUSCL extensions. Numerical experiments, concerning a one-dimensional dense gas shock tube, supersonic flow of a
BZT gas past a forward-facing step, and transonic dense gas flow through a turbine cascade, show a negligible influence of the
adopted linearization procedure on the solution accuracy, whereas it significantly affects computational efficiency.
� 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The assumption that the fluid behaves like a perfect
gas is the basis of classical gas dynamics, and is used
in most compressible flow analyses in the engineering
sciences. Dense gas dynamics, on the other hand, studies
the dynamic behavior of gases in the dense regime, i.e. at
thermodynamic conditions close to the liquid–vapor
coexistence curve, where the perfect gas law is invalid.
The computation of dense gas flows has received in-
creased attention in the last decade, motivated by the
fact that some very common fluids employed in engi-
neering applications, mainly heavy polyatomic fluids,
can exhibit unusual gas dynamic behavior in the dense
gas regime at transonic and supersonic speeds. The most
impressive differences occur for the so-called Bethe–Zel�-
dovich–Thompson (BZT) fluids, for which compression

shocks violate the entropy inequality over a certain
range of temperatures and pressures, and are therefore
inadmissible.

The dynamics of dense gases is governed by the key
parameter [1]:
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here presented in its non-dimensional form. In Eq. (1), v

is the fluid specific volume, p is the pressure, a the sound
speed, and s the entropy. C is commonly referred-to as
the fundamental derivative of gas dynamics [1]. Remem-
bering that the square of the sound speed a is given by
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C can be interpreted as a measure of the rate of change
of the sound speed with density due to isentropic pertur-
bations. The sign of C is entirely determined by the sign

of the second derivative o2p
ov2
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, i.e. the concavity of the

0045-7930/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compfluid.2005.04.007

* Tel.: +39 080 5963463; fax: +39 080 5963411.
E-mail address: paola.cinnella@unile.it

Computers & Fluids 35 (2006) 1264–1281

www.elsevier.com/locate/compfluid

mailto:paola.cinnella@unile.it


constant-entropy lines (isentropes) in the p–v plane.
Now, the relationship between the entropy change and
the specific volume change through a weak shock wave
can be written as [2]:

Ds ¼ � a2C
v3
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where D represents a change in a given fluid property
through the shock, and T is the absolute temperature.
For perfect gases, C is just equal to cþ1

2
, where c is the

specific heat ratio. As c is necessarily greater than one,
for thermodynamic stability reasons, than C > 1 also.
As a result, a negative change in the specific volume
through the shock, i.e. a compression, is required in
order to satisfy the second law of thermodynamics.
For dense gases, the perfect gas law no longer holds,
and more complicated equations of state have to be
considered. In this case, the isotherms are no longer
concave-up hyperbolas in the p–v plane, but more com-
plicated curves that exhibit negative concavity in the
neighborhood of the liquid–vapor coexistence curve, in
order to satisfy the thermodynamic conditions of zero
slope and zero curvature at the critical point. It is well
known that the isentropes tend to coincide with the iso-
therms as the specific heats tend to infinity; therefore,
any fluid with sufficiently large specific heats will neces-
sarily have concave-down isentropes in the dense-gas re-
gion of the p–v plane, which immediately implies C < 0
in the same region. The Bethe–Zel’dovich–Thompson flu-

ids (from the names of the researchers who for the first
time postulated their existence) are precisely defined as
fluids which exhibit a region of negative C above the sat-
uration curve in the vapor phase. The thermodynamic
region where C < 0 is called the inversion zone and the
curve C = 0 the transition line. If C is negative, from
Eq. (2) we conclude that the specific volume must in-
crease through a shock wave in order to have a corre-
sponding increase of the entropy. This indicates that
only expansion shocks will be admissible in these re-
gions, whereas discontinuous compression waves will al-
ways spread into fans if inserted within the flow. BZT
properties are typically encountered in heavy fluids char-
acterized by large cv/R ratios (e.g. [3]), where cv is the
constant volume specific heat and R the gas constant.
In Fig. 1, the p–v diagram for a van der Waals gas with
c = 1.0125 is shown, representative of a typical heavy
fluorocarbon.

The disintegration of compression shocks and other
non-classical effects typical of BZT fluids could find appli-
cation in technology. Particularly, attractive seems the
possibility of reducing losses due to shock waves and
boundary layer separation in turbomachines and nozzles.

In the past, several numerical methods have been
proposed for the computation of the so-called ‘‘real
gas flows’’. Such methods are typically extensions of
schemes previously developed for perfect gas problems.

Roe�s method being may be the most widely used in per-
fect gas CFD codes, it is also the one for which more
real-gas extensions have been proposed. In fact, it is well
known that the linearization procedure of Roe�s scheme
is not uniquely determined when a real gas equation of
state is taken into account. Some examples of real-gas
generalizations of Roe�s scheme are given by Refs.
[4–8]. In practice, however, no dramatic evidence of
the numerical superiority of one formulation over an-
other has been provided, even for very severe applica-
tions such as hypersonic flows, characterized by strong
shock waves, chemical reactions, ionization and so on,
see for example [4,9]. This has even driven some
researchers to adopt, in the current use, approximate
averages which do not satisfy the U-property, but work
fairly fine in practice. An approximate Roe-type scheme
has been proposed, for example, in [10,11]. Dense gas
flows, on the other hand, can be characterized by quite
‘‘exotic’’ waves, such as shock/fan combinations, expan-
sion shocks, etc.; however, flow discontinuities are gen-
erally very weak for a large range of temperatures and
pressures. Thus, it seems reasonable to suppose that,
for dense gas problems, the choice of a particular Roe
linearization would have a quite small influence on the
quality of the numerical results. On the contrary, the
complexity of the particular formulation does affect
computational costs significantly, especially when com-
plicated equations of state are taken into account.

The aim of the present work is to provide a theoret-
ical justification for the limited influence of the chosen
Roe linearization on the solution accuracy, and to the
fact that even ‘‘approximate’’ averages give substantially
correct results. To do that, an ‘‘extreme’’ case is consid-
ered: a simplified procedure is introduced, which reduces

v/vc

p
/p

c

0.3

0.3

0.8

0.8

1.3

1.3

1.8

1.8

2.3

2.3

2.8

2.8

3.3

3.3

0.6 0.6

0.8 0.8

1 1

1.2 1.2

1.4 1.4

Γ=0 curve

Saturation curve

Isentropes

Critical isotherm

Concave-down portion

Fig. 1. p–v diagram for a van der Waals gas with c = 1.0125. The
variables are normalized with their critical values.
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