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A B S T R A C T

Solution-processed organic light-emitting diodes (OLEDs) are currently attracting a lot of attention for their
simple fabrication process. However, most laboratory-scale solution-processed devices are fabricated by spin-
coating method which is not the optimum method for fabricating devices with a larger area as much of the
material is wasted. Herein, a dip-coating method is introduced for its advantages for producing large-sized
devices. The method is a more reliable and material saving fabrication process. In the present study, both the
hole-transporting layer (HTL) and emitting layer (EML) were prepared by dip coating, and solution-processed
green thermally activated delayed fluorescence (TADF) based OLEDs with high efficiencies were fabricated.

1. Introduction

After the first highly efficient OLED was fabricated by C. W. Tang
[1], OLEDs have attracted more and more attention [2,3]. It was pre-
dicted that OLEDs would be the future display technology and light
source because of their unique advantages of high electroluminescence
(EL) efficiency, wide viewing angle, high contrast, high-speed response,
low color temperature, large area, and low weight [4,5]. In particular,
TADF-based devices are very promising and regarded as the next gen-
eration OLED [6–11]. Owing to the ability to precisely control the
thickness and morphology of the deposited layers in a high vacuum
ambient, vacuum evaporation is the most common method to fabricate
all organic optoelectronic and electronic devices; functional molecular
materials are evaporated onto the substrates layer by layer [12,13].
However, the method has its limitation when applied to TV-sized pa-
nels, at the same time the expensive manufacturing line and compli-
cated fabrication process further restrict the commercialization of large-
area OLEDs.

Spin-coating and ink-jet printing have long been popular solution-
processed methods for their simple, low manufacturing cost and fast
processing [14–20]. For the traditional spin coating method, the
thicknesses and morphologies of the spin-coated layers will be de-
termined by the amount of material dropped on the substrates and the
spinning speed [21,22]. For small-sized and laboratory-scaled devices,

high-performance devices can be achieved by spin-coating method
[23]. However, the spin-coating method is not compatible with larger
areas and much material will be wasted during the spin-coating process.
In addition, spin-coating is not appropriate for mass production of high-
quality organic electronic and optoelectronic devices [16]. While ink-
jet printing is an ideal solution for preparing TV-sized pixelated RGB
patterns in OLED display industry for large-scale manufacturing, it may
not be very useful for those organic electronic and optoelectronic de-
vices that do not require pixelation. Also, the inks that are suitable for
printing are very demanding [24].

On the contrary, dip-coating method is commonly used for making
thin film transistors (TFTs), organic TFTs and electrodes for organic
electronic devices owing to its high potential for large-sized devices,
improved reliability and material saving fabrication process [25–28].
However, HTL and EML fabricated by dip-coating process for OLED
fabrication is rarely reported. In this work, dip coating is introduced as
a novel method for making multilayered solution-processed OLEDs. We
demonstrate high-efficiency green TADF OLEDs composed of dip-
coated HTL and EML layers.

2. Results and discussion

Scheme 1 shows the dip-coating procedure. The thickness of the
material is achieved through controlling the dipping time, dip-coating
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speed and the concentration of the HTL and EML solutions. The dip-
coating system is carried out in an enclosed chamber to isolate the
solutions from the ambient. By precisely controlling the dipping time
and dip-coating rate, smooth and large-area layers can be deposited
repeatedly [28,29]. In our study, poly(3,4-ethylenediox-
ythiophene):poly(styrenesulfonate) (PEDOT:PSS) films were prepared
on ITO substrates using the dip-coating method at different speeds
varied from 200 to 2000 μm/s. PEDOT:PSS film spin-coated with an
optimized speed of 3000 rpm was used as a reference film (Fig. S1)
[30]. All films were annealed at 120 °C for 10 min. AFM images of the
dip-coated and spin-coated PEDOT:PSS films are shown in Fig. 1. The
root-mean-square roughness of the dip-coated films are 1.10 nm,
0.62 nm, 0.81 nm and 1.35 nm for dipping speeds of 200 μm/s,
500 μm/s, 1000 μm/s and 2000 μm/s, respectively, and the spin-coated
film has a RMS roughness of 1.36 nm. It can be seen that the
morphologies of the dip-coated films are as smooth as the spin-coated

one, or even better. The film formation of dip-coated film is influenced
by dip-coating speed and the solvent evaporation rate [31]. All of the
as-prepared PEDOT:PSS properties are summarized in Table 1.

Scheme. 1. Dip-coating procedure.

Fig. 1. AFM images of dip-coated PEDOT:PSS films with dipping speeds of a) 200 μm/s b) 500 μm/s c) 1000 μm/s d) 2000 μm/s, respectively; e) spin-coated PEDOT:PSS film at a speed of
3000 rpm.

Table 1
Properties of PEDOT:PSS films on ITO substrate prepared by different dipping speeds and
spin-coating.

Film Thickness (nm) Sheet resistance (Ω/square) RMS (nm)

2000 μm/s 30 15.7 1.35
1000 μm/s 35 12.8 0.81
500 μm/s 75 13.2 0.62
200 μm/s 55 14.2 1.10
Spin-coated 80 16.5 1.36

Fig. 2. Optical transparency of ITO bare substrate and PEDOT:PSS coated ITO films
prepared by dipping coating and spin-coating.
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