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a b s t r a c t

We present a model study of the effects of two mechanisms, the Rashba spin–orbit coupling and the spin-
flip term, on the polaron spin inversion in an organic semiconductor. We find that, while both mecha-
nisms can impact the polaron spin by changing the polaron level from a spin eigenstate to a spin super-
position state, substantial difference can be observed in the static and dynamical properties of the
polaron. Given the values of model parameters relevant to conjugated polymers, the magnitude of the
polaron spin inversion caused by the spin–orbit coupling is much smaller than that by the spin-flip term.
When the dynamical properties of the polaron are considered, spin oscillations induced by both mecha-
nisms are observed when the polaron moves along the polymer chain driven by external electric field.
Interestingly, the length of the polaron motion during one spin oscillation period remains constant in
the case of spin–orbit coupling, while it is enhanced with increasing the driven electric field in the case
of spin-flip term, in which larger spin diffusion length and longer spin relaxation time can be expected.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Organic spintronics, starting from the first discoveries of spin-
polarized injection into organic semiconductor [1] and giant
magnetoresistance in organic spin valves [2], has developed
rapidly in recent years due to its important potential application
in next generation functional devices. Organic semiconductors
are expected to be excellent material candidates for spintronic
applications because of their advantages in many aspects. On one
hand, the spin diffusion length in organic semiconductors is extre-
mely long as compared with that in their inorganic counterparts
because of the weak spin–orbit coupling (SOC) and hyperfine inter-
actions (HFI) in these materials. On the other hand, organic semi-
conductors are low cost and can be easily processed through
large-area techniques in experiment and industry. As such, organic
semiconductors have been widely employed in the fabrication of
organic functional devices, such as organic spin valves, field-effect
transistors, light-emitting diodes, and photovoltaic cells [2–5].

The understanding of spin relaxation mechanisms in organic
semiconductors is very important for improving the performance
of organic spintronic devices. In experiment, it was demonstrated
that the spin diffusion length in the organic layer of organic spin

valves is directly correlated with the magnetoresistance of the
devices [2,6], and the spin relaxation process is mainly caused by
the HFI in many organic systems [7–10]. Furthermore, the SOC is
also excepted to be a significant source of spin relaxation in organic
semiconductors such as Xq3 (X = Al, Ga, In, Bi) and the triethylsi-
lylethynyl series [11,12]. However, the spin relaxation mechanisms
of organic semiconductors are actually very complicated and
expected to be material dependent. For instance, temperature-de-
pendent probes of the spin diffusion length in two structures of
poly (3-hexyl thiophenes) revealed that distinct spin relaxation
mechanisms can be observed under different charge transport
mechanisms of these materials [13]. On the theoretical side, by
Monte Carlo simulations of the HFI in organic semiconductors,
Bobbert et al. revealed that the spin diffusion length in these
materials weakly depend on temperature but is sensitive to the
magnetic field [14]. Yu explored the impact of SOC on the spin
properties of hopping charge transport in organic semiconductors
and demonstrated that the temperature dependence of the spin
diffusion length in Alq3 can be accounted for by a theory based
on the SOC in these systems [15,16]. Harmon and Flatté proposed
a spin-flip-based mechanism in structural disordered organic
solids by using the percolation theory and demonstrated that faster
spin-flip transitions are very important for producing magnetore-
sistance in these systems [17]. More recently, Wu et al. showed
that the quenching of quantum correlation between the carrier’s
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spin and the HFI-induced local spin environment also represents
an important factor responsible for the magnetoresistance in
organic semiconductors [18]. The results of these investigations
indicate that the spin interactions such as HFI and SOC play impor-
tant roles in impacting the spin relaxation processes in organic
semiconductors.

While significant progresses have been made, the spin relax-
ation mechanism in organic semiconductors, in particular how
the relevant spin interactions operate in the spin relaxation pro-
cess, still remains controversial [19,20]. In real materials, in addi-
tion to the SOC and HFI as mentioned above, more factors such
as the thermal effect [21] and the scattering of magnetic impurities
[22] can also contribute to spin flip in the systems, making the
modeling of spin relaxation in organic semiconductors more com-
plicated. Moreover, while spin-dependent polaron hopping in dis-
ordered organic semiconductors has been extensively studied, spin
relaxation based on polaron drift in organic semiconductors was
much less investigated in the literature. In particular, the dynami-
cal properties of polaron spin under different spin interactions still
remain unclear. Recently, a mechanism based on spin-flip term
that is very similar in form to the Rashba SOC [23,24] was proposed
to interpret the spin relaxation in one-dimensional organic sys-
tems [25]. The spin-flip term was introduced to model the factors
responsible for spin flip other than the Rashba SOC. As revealed by
Xie et al. [25], the Rashba SOC and the spin-flip term are expected
to play different roles in impacting the spin-dependent properties
of polarons in organic semiconductors. In this paper, we aim to
perform a detailed study on the Rashba SOC and the spin-flip term
in a model Hamiltonian and compare the impacts of these two
mechanisms on the polaron static and dynamical properties in
conjugated polymer.

2. Model and method

In our simulations, without loss of generality, we consider a
one-dimensional polymer chain of trans-polyacetylene. The
Hamiltonian of the system can be described with the well-known
Su–Schrieffer–Heeger (SSH) model by expanding to incorporate
the spin interactions of our interest [26,27]:

H ¼ He þ HL þ Hso þ Hsf : ð1Þ

The first term represents the electronic part of the Hamiltonian:

He ¼ �
X
n;s

½t0 � aðunþ1 � unÞ�ðcþn;scnþ1;s þ cþnþ1;scn;sÞ; ð2Þ

where t0 denotes the average electronic transfer integral, a the elec-
tron–lattice coupling parameter, and un the lattice displacement at
the nth site. cþn;s and cn,s respectively describe the creation and anni-
hilation operator of p electrons at the nth site with spin s. The sec-
ond term in Eq. (1) denotes the lattice part of the Hamiltonian for
acoustic vibrations:

HL ¼
X

n

K
2

unþ1 � unð Þ2 þ 1
2

M _u2
n

� �
; ð3Þ

where K denotes the elastic constant and M the mass of a CH group.
The last two terms in Eq. (1) represent the Hamiltonians of the

spin interactions that will be focused in this work. One is the
Hamiltonian of the Rashba SOC (simply referred to as SOC here-
after) that, for the one-dimensional polymer chain we consider,
can read [23,24]:

Hso ¼ �tso

X
n

cþnþ1;"cn;# � cþnþ1;#cn;" þ h:c:
� �

; ð4Þ

where tso denotes the SOC parameter tso = b/2a with b the strength
parameter and a the lattice constant. The other one, Hsf, is the spin-

flip term that describes the factors responsible for spin flip other
than the SOC mechanism and can be formulated as:

Hsf ¼ �tsf

X
n

cþnþ1;"cn;# þ cþnþ1;#cn;" þ h:c:
� �

: ð5Þ

It is noted that the spin-flip term of Eq. (5) is very similar in
form to that of the SOC of Eq. (4).

The static polaron properties of the system can be obtained by
diagonalizing the Hamiltonian of Eq. (1) at the equilibrium geome-
try of the lattice. In the presence of SOC or spin-flip term, the elec-
tronic wave function can be expanded on the spin-dependent

Wannier basis wl

��� E
¼
P

n;sZl;n;s n; sj i, where l describes the lth

energy level and Zl;n;s the probability amplitude of the state wl

��� E
at the nth site with spin s. The energy level, wave function, and
equilibrium lattice geometry can be obtained by solving the com-
bined eigen equation of electron:

� t0 � aðunþ1 � unÞ½ �Zl;nþ1;s � t0 � aðun � un�1Þ½ �Zl;n�1;s

�tso Zl;n�1;�s � Zl;nþ1;�s
� �

� tsf Zl;n�1;�s þ Zl;nþ1;�s
� �

¼ elZl;n;s

ð6Þ

and the balance equation of lattice

unþ1 � un ¼
a
K

X
s

1
N � 1

XN

n¼1

qn;nþ1;s � qn;nþ1;s

 !
; ð7Þ

where qn;n0 ;s ¼
Pocc

n¼1Z�l;n;sZl;n0 ;s denotes the charge density matrix.
To simulate the transport of polaron, we apply along the poly-

mer chain an external electric field with the form of
E0 ¼ �@AðtÞ=@t, where A denotes the time-dependent vector poten-
tial. The electronic Hamiltonian including the effect of electric field
in the periodic boundary condition can accordingly be written as
[28,29]:

He ¼ �
X
n;s

tn;nþ1ðe�icAcþn;scnþ1;s þ h:c:Þ; ð8Þ

where the coefficient c is defined as c ¼ ea=�h, with a the lattice con-
stant and e the electron charge. The evolution of the electronic
states can be obtained by solving the time-dependent Schrödinger
equation:

i�h
@

@t
Zl;n;sðtÞ ¼ �tn;nþ1eicAZl;nþ1;sðtÞ � tn;n�1e�icAZl;n�1;sðtÞ

� s � tso e�icAZl;n�1;�sðtÞ � eicAZl;nþ1;�sðtÞ
� �

� tsf e�icAZl;n�1;�sðtÞ þ eicAZl;nþ1;�sðtÞ
� � ð9Þ

while the evolution of the lattice coordinates can be described by
the Newtonian equation of motion:

M€uðtÞ ¼ Kðunþ1ðtÞ þ un�1ðtÞ � 2unðtÞÞ

þ a eicA qc
n;nþ1ðtÞ � qc

n�1;nðtÞ
h i

þ c:c
n o

: ð10Þ

The charge and spin distributions of polaron on the nth site at
time t can be calculated by:

qc
nðtÞ ¼

Xocc

l¼1

Zl;n;"ðtÞ
�� ��2 þ Zl;n;#ðtÞ

�� ��2� �
� 1 ð11Þ

and

qs
nðtÞ ¼

Xocc

l¼1

Zl;n;"ðtÞ
�� ��2 � Zl;n;#ðtÞ

�� ��2� �
; ð12Þ

respectively. The total spin of the system can be obtained by
summing over all the lattice sites as stðtÞ ¼

P
nqs

nðtÞ. To track the
movement of polaron, we calculate the center of the polaron state
pc that, in the periodic boundary condition, is defined as:
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