Accepted Manuscript

Numerical simulations and electrochemical experiments of the mass transfer of microvias electroforming under ultrasonic agitation

Ming Zhao, Liqun Du, Leijie Qi, Yuanqi Li, Yu Li, Xiaojun Li

PII: S1350-4177(18)30168-8

DOI: https://doi.org/10.1016/j.ultsonch.2018.07.002

Reference: ULTSON 4219

To appear in: *Ultrasonics Sonochemistry*

Received Date: 4 February 2018 Revised Date: 28 June 2018 Accepted Date: 3 July 2018

Please cite this article as: M. Zhao, L. Du, L. Qi, Y. Li, Y. Li, X. Li, Numerical simulations and electrochemical experiments of the mass transfer of microvias electroforming under ultrasonic agitation, *Ultrasonics Sonochemistry* (2018), doi: https://doi.org/10.1016/j.ultsonch.2018.07.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Numerical simulations and electrochemical experiments of the mass transfer of

microvias electroforming under ultrasonic agitation

Ming Zhao^a, Liqun Du^{a,b,*}, Leijie Qi^a, Yuanqi Li^a, Yu Li^a, Xiaojun Li^a

^aKey Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, People's Republic of China

^bKey Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, People's Republic of China

*Corresponding author. E-mail address: duliqun@dlut.edu.cn (Liqun Du)

Abstract

This paper explores the mass transfer mechanism of microvias electroforming under ultrasonic agitation by numerical simulations and electrochemical experiments. Firstly, the velocity distribution of electroforming solution inside the microvias under ultrasound treatment is simulated by COMSOL Multiphysics software. The ultrasonic frequency is that of 120 kHz. The ultrasonic powers are 100w, 200w, 300w and 400w, respectively. The simulation results indicate that the mean liquid velocity inside the microvias increases with the increasing of acoustic power. In addition, under a certain ultrasonic power, the mean liquid velocity will decrease with increasing the distance between microvias and transducer, the aspect ratio of microvias and the distance between cathode and central position. Secondly, electrochemical experiments are presented to investigate the effect of ultrasonic agitation on the electrode kinetics of microvias electroforming. It is found that ultrasonic decreases the thickness of diffusion layer, increases the limiting diffusion current densities and further enhances the mass transfer of microvias electroforming. Compared with the silent condition, the diffusion layer thicknesses with the acoustic power of 100W, 200W, 300W, 400W are decreased by 50.0%, 64.1%, 69.3% and 74.5%, respectively. Finally, according to the results above, the 200×200 metal micro-column array structures are fabricated by ultrasonic electroforming under the condition of 120kHz and 200W. The metal micro-column is 250µm high and has a diameter of 80µm. The results show that ultrasonic electroforming can enhance the mass transfer of microvias electroforming, and further solve the problem of porous structure in electroforming layer. This work contributes to expand the application of ultrasonic agitation in the microvias electroforming.

Keywords: Microvias electroforming; Ultrasonic; Simulation; Electrochemical experiments; Micro-column array structures

1. Introduction

With the development of micro-electro-mechanical system (MEMS) technology, microvias electroforming have good potential applications to fabricate microarray electrodes[1,2], biopotential electrodes[3-5] and metal moulds[6], etc. However, there is a technical issue in electroforming microvias with high aspect ratio and small diameter. Influenced by the small diameter and high aspect ratio, microvias electroforming faces the problem of poor mass transfer, which easily causes the problem of porous structure in electroforming layer, finally leads to the fabrication failure [7, 8]. These problems limit the development of microvias electroforming in a certain extent. Hence, it is significant to investigate the methods of improving the mass transfer of microvias electroforming. Some efforts have been made to improve the mass transfer of microvias electroforming, such as using various additive chemistries[9,10], adding a moving cathode[11], using an air-pressure agitation, adding a thermal gradient[12], adopting pulse-reversed current[13], and optimizing process parameters[14]. But the improvement effect of these methods is unsatisfactory.

Download English Version:

https://daneshyari.com/en/article/7702248

Download Persian Version:

https://daneshyari.com/article/7702248

<u>Daneshyari.com</u>