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This paper strictly demonstrated a nonlinear Helmholtz equation, with its corresponding new expressions for the
wave number of the mixture, for the propagation of sound trough a bubbly liquid. The demonstration was
conducted under the assumption of periodicity of volume fluctuations, the acoustic approximation and con-
sidering only mono-harmonic pressure oscillations. The model revealed a beautiful symmetry between the
average acoustic energy density and the average energy dissipation, as well as between the time average of the
first and second derivatives of such fluctuations. The nonlinear model was validated with available experimental

data at very low pressure amplitudes yielding the same results as the linear model. However, unlike the linear
model, the advantage of the nonlinear model is that the wave number of the mixture is function of the pressure
amplitude, which has great implications to model the sound propagation on cavitating bubbly liquids where the
linear theory greatly under-predicts.

1. Introduction

The transmission of sound through liquids containing bubbles is
strongly attenuated by the presence of those bubbles even if the volume
fraction is very low. For instance, bubble volume fractions as low at
0.4% can reduce the speed of sound below the speed of sound in the air
contained in the bubbles [1]. This is a well-known fact that has been
experimentally confirmed and is well document in the scientific lit-
erature. The sound propagation through a liquid medium containing
bubbles has been an active area of research since the work of Foldy [2]
who considered the bubbles as scatters interacting with the incident
acoustic field. The propagation of the sound field thorough a bubbly
liquid is completely specified if the wave number of the “effective
medium” is known [3]. Foldy’s model determined the effective wave
vector for a monodispersed population of bubbles as a function of the
speed of sound in the pure liquid, the angular frequency, the population
of bubbles per unit of volume and the scattering function for a single
bubble of a specific radius. The main assumption on Foldy’s model is
that the scattering function is composed of the contribution of the in-
cident and scattered fields but neglects the interaction between scatters.
Hence, Foldy’s model is restricted to low volume fractions where the
separation between neighboring bubbles is large [3]. The scattering
function is estimated as a function of the resonance frequency of the
bubble and the dampening constants due to thermal, viscous and
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radiative energy loses. The calculation of the dampening is due to the
model of Prosperetti [4] who determined dampening mechanisms after
linearizing the radial oscillations of bubbles induced by a harmonic
incident pressure field. By linearizing the oscillation of bubbles, the
model is restricted not only to low volume fractions but also to very low
pressure amplitudes wherein the bubble radius is assumed to change
proportionally to the pressure field.

A second approach to model the sound propagation through a
bubbly liquid is a continuum approach. A theory of waves in bubbly
liquids was proposed from a set of nonlinear equations, based on phy-
sical reasoning, by van Wijngaarden [5,6]. This was done by a semi-
empirical volume averaging of the bubbly liquid mass and momentum
conservation equations which are closed by a Rayleigh-Plesset equa-
tion. Subsequently, Caflish et al. [7] validated van Wijngaarden ap-
proach by developing a model that reduces to the equations of van
Wijngaarden. Caflish’s model is a mathematically rigorous derivation of
average equations described from the microscopic motion of liquids and
bubbles. Caflish’s model neglected convection, which is valid at slow
velocities, and assumed a very small fraction of bubbles. Caflish equa-
tions are nonlinear and therefore computationally demanding to solve.

Commander and Prosperetti [8] developed a linear model for both
mono and poly-disperse bubble populations. It dramatically simplified
the nonlinear complexities of Caflish equations. This linearized model
allows modelling sound waves via a Helmholtz equation in which a
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complex wave number accounts for the effects of the mixture con-
taining bubbles of different sizes. The model of Commander and Pros-
peretti can predict the pressure field distribution of acoustic waves
moving on bubbly liquids at frequencies lower than resonance, low
bubble volume fractions and low pressure amplitudes where linear
simplifications are valid.

Linear models over predict the sound attenuation at resonant con-
ditions. Furthermore, the sound attenuation at higher frequencies (well
above resonance) is still unclear. Some works have been devoted to
account for the interaction of bubbles to explain the over prediction at
resonance. For instance, Fuster, Conoir and Colonius [9] simulated the
effect of bubble-bubble interactions on the acoustic properties of the
effective medium by modifying the linear theory accounting for a cri-
tical characteristic distance at which bubble-bubble interactions affect
attenuation. Ando, Colonius and Brennen [10] modified the dispersion
relation by including the effect of liquid compressibility on the natural
frequency of bubbles, since the wavelength of ultrasonic waves may be
similar or shorter than the mean bubble spacing. Kargl [3] also argued
that the linear theory of Commander and Prosperetti can be improved if
the Keller’s bubble dynamics equation is expressed for bubbles in the
effective medium. A recent improvement of the linear model, was
proposed by Zhang and Du [11], who performed a surface integral over
the bubble surface to account for non-uniform pressure fields occurring
for large values of kR, (wave number times equilibrium radius). The
model was validated using Kol'tsova et al. [12] experimental data
showing that this new approach improved predictions at large values of
kR,. Recently, Fuster and Montel [13], whose work was then extended
by Zhang at al [14,15], generalized the classical linear theory of diluted
bubbly liquids by including the vapour mass transfer from the liquid
boundary into the bubble, showing that mass transfer effects play an
important role in the phase speed and attenuation at frequencies below
the bubble resonant frequency.

Linear models have no dependency on pressure amplitude rendering
those models inadequate to represent acoustic pressure fields on cavi-
tating bubbly liquids, where the acoustic pressure amplitude is higher
than the Blake threshold causing the bubble size to increases many fold
to then abruptly collapse and rebound as shown by single bubble so-
noluminescence (SBSL) experiments. Nonlinear models, such as the one
of Vanhille and Campos-Pozuelo [16] shows that for low pressure
amplitude, bubbles oscillate harmonically and proportionally to the
acoustic pressure, but at high pressure amplitudes nonlinear distortions
on the bubble oscillations are predicted with a strong asymmetry be-
tween the compression and rarefaction phases. Furthermore, in ca-
vating bubbly liquids sound is attenuated many fold higher than pre-
dictions from the linear model; the linear theory predicts aberrantly low
attenuations compared to experimental data [17]. Addressing this
problem Louisnard [18] proposed a simple model that coupled the
behaviour of inertial bubbles, represented by the Rayleigh Plesset
equation (RPE), with the acoustic field, represented by a nonlinear
Helmholtz equation with a complex wave number. Louisnard exactly
correlated the imaginary part of the square of the wave number with
the thermal and viscous energy dissipation of bubbles.

The method outlined by Louisnard allowed coupling the oscillations
of single bubbles with the pressure field by accounting for the nonlinear
behaviour of inertial bubbles, which are subjected to high pressure
amplitudes, instead of assuming small bubble-oscillations around
equilibrium, as assumed in the linear model of Commander and
Prosperetti [8], which is valid at low pressure amplitudes only. Louis-
nard calculation of the energy dissipation terms agreed with the linear
model for low pressure amplitudes, well below the Blake threshold, but
it departed from the linear theory when the pressure amplitude ap-
proached and exceeded the Blake threshold. For pressure amplitudes
above that threshold the dissipation terms were several orders of
magnitude higher than the linear prediction showing that the linear-
ization of Commander and Prosperetti [8] does not represent correctly
the strong attenuation observed on cavitating systems. Jamshidi and
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Brenner [19] extended Louisnard’s approach by using the Keller-Miksis
Equation (KME), instead of the classical Rayleigh Plesset equation
(RPE), to account for liquid compressibility. Hence, their model ac-
counted for acoustic radiation as a third dissipation mechanism.

One of the strong features of Louisnard model is that it correlates
the dynamics of strongly attenuating inertial bubble with a nonlinear
Helmbholtz equation. Dogan and Popov [20] compared the non-linear
model of Louisnard, calculating the dissipation terms as per Jamshidi
and Bernner [19] approach, with the linear model of Commander and
Prosperetti. They found that pressure amplitudes calculated by the
linear theory are approximately 4 times larger than calculations by the
nonlinear approach showing that attenuation is significantly under-
estimated by the linear theory. Dogan and Popov’s simulations also
demonstrated that the nonlinear model captured more realistically the
spatial distribution of the cavitation zones.

In spite of the great progress achieved by Louisnard to model sound
waves moving through cavitating liquids, the model is not complete
from a theoretical point of view because of two factors: firstly, the real
part of the square of the wave number was approached to the linear
model of Commander and Prosperetti [8], and secondly, the nonlinear
Helmholtz equation used by Louisnard was demonstrated from the
linear theory. Hence, the model of Louisnard is a heuristic combination
of the nonlinear oscillations of bubble with the linear theory. In this
study the work of Louisnard was advanced by firstly formulating an
exact correlation of the real part of the square of the wave number, and
secondly, by strictly demonstrating a nonlinear Helmholtz equation,
that accounts for the effect of pressure amplitude, without relying upon
the linear theory and producing a mathematically complete and self-
contained nonlinear model.

Initially an inhomogeneous Helmholtz equation, with a real wave
number, is formulated from the Caflish equations. Then, the imaginary
part of the square of a mixture wave number, demonstrated by
Louisnard [18], was combined with its real part, strictly demonstrated
in this article, to finally recast the inhomogeneous equation into a
nonlinear Helmholtz equation that accounts for pressure amplitude.
The equation is valid under three simplifications: firstly, the acoustic
approximation, where density and speed of sound in the liquid are as-
sumed constant; secondly, assuming that bubbles oscillate periodically
with a period corresponding to the wave period; and thirdly, harmonics
and oscillatory pressure components at frequencies different than the
primary frequency were neglected. In this first part of a two parts paper
the nonlinear model is formulated and validated with the experimental
data of Silberman [21], Kol'tsova et al. [12] and Wilson, Roy and Carey
[22]. The nonlinear model yielded almost the same predictions of the
linear theory when run at very low pressure amplitudes. The nonlinear
model has the advantage of accounting for the effect of pressure on
attenuation representing the strong attenuation observed on cavitating
bubbly liquids more realistically than the linear model. The main
contribution of this paper is on the demonstrations on appendixes F, G,
H, J, K and L but to facilitate the reading of the paper, for those that are
not interested on mathematical demonstrations, section 2 “Mathema-
tical model” explains the mathematical framework and background,
including the main findings from the appendixes but without demon-
strations. The accompanied paper part II applies the nonlinear model to
acoustic cavitation.

2. Mathematical model
2.1. Bubble dynamics

Simplified bubble dynamic models are second order ordinary dif-
ferential equations representing the oscillation of gas bubbles in a liquid
under the action of acoustic fields. These models are based on the
classical Rayleigh-Plesset equation (RPE) [23-26] describing the radial
oscillations experienced by bubbles due to an external acoustic pressure
p:
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