Accepted Manuscript

Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal—organic framework with removal efficiency of Sudan red and Congo red

Nasrin Abdollahi, Mohammad Yaser Masoomi, Ali Morsali, Peter C. Junk, Jun Wang

PII: \$1350-4177(18)30354-7

DOI: https://doi.org/10.1016/j.ultsonch.2018.03.001

Reference: ULTSON 4113

To appear in: *Ultrasonics Sonochemistry*

Received Date: 7 November 2017 Revised Date: 28 February 2018 Accepted Date: 3 March 2018

Please cite this article as: N. Abdollahi, M.Y. Masoomi, A. Morsali, P.C. Junk, J. Wang, Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal—organic framework with removal efficiency of Sudan red and Congo red, *Ultrasonics Sonochemistry* (2018), doi: https://doi.org/10.1016/j.ultsonch.2018.03.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Sonochemical synthesis and structural characterization of a new Zn(II)

nanoplate metal-organic framework with removal efficiency of Sudan red

and Congo red

Nasrin Abdollahi, ^a Mohammad Yaser Masoomi, ^a Ali Morsali ^a* Peter C. Junk ^b, Jun Wang

^a Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-

4838, Tehran, Islamic Republic of Iran

^b College of Science & Engineering, James Cook University, Townsville Queensland, 4811,

Australia

*E-mail: morsali_a@modares.ac.ir.Tel: (+98) 21-82884416

Abstract: A 3-D Zn(II) based metal-organic framework (MOF) of [Zn₄(oba)₃(DMF)₂] was

synthesized using the nonlinear dicarboxylate ligand, 4,4'-oxybis(benzoic acid) (H2oba) via

sonochemical and solvothermal routes. IR spectroscopy, single-crystal X-ray crystallography,

scanning electron microscopy, and X-ray powder diffraction were used to characterize these

MOF samples. The effect of different times of irradiation and various concentrations of primary

reagents were experimented for obtaining monotonous morphology. The results show that

uniform nanoplates can be achieved by increasing the time of irradiation and decreasing the

concentration. N₂ adsorption was applied to examine the effect of synthesis method on porosity

of the framework. Also Congo red and Sudan red dyes were employed to explore the efficiency

of this MOF in removal of the dye pollutants.

Keywords: Ultrasonic; MOF; Congo red; Sudan red

Download English Version:

https://daneshyari.com/en/article/7702438

Download Persian Version:

https://daneshyari.com/article/7702438

<u>Daneshyari.com</u>