Accepted Manuscript

Investigation of Tip Sonication Effects on Structural Quality of Graphene Nanoplatelets (GNPs) for Superior Solvent Dispersion

Zeeshan Baig, Othman Mamat, Mazli Mustapha, Asad Mumtaz, Khurram S. Munir, Mansoor Sarfraz

PII: S1350-4177(18)30414-0

DOI: https://doi.org/10.1016/j.ultsonch.2018.03.007

Reference: ULTSON 4119

To appear in: *Ultrasonics Sonochemistry*

Received Date: 3 May 2017
Revised Date: 6 March 2018
Accepted Date: 13 March 2018

Please cite this article as: Z. Baig, O. Mamat, M. Mustapha, A. Mumtaz, K.S. Munir, M. Sarfraz, Investigation of Tip Sonication Effects on Structural Quality of Graphene Nanoplatelets (GNPs) for Superior Solvent Dispersion, *Ultrasonics Sonochemistry* (2018), doi: https://doi.org/10.1016/j.ultsonch.2018.03.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Investigation of Tip Sonication Effects on Structural Quality of Graphene Nanoplatelets (GNPs) for Superior Solvent Dispersion

Zeeshan Baig ^{a*}, Othman Mamat ^{a**}, Mazli Mustapha ^a, Asad Mumtaz ^b, Khurram S. Munir ^c,

Mansoor Sarfraz ^d

Abstract

The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp² carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60%, 80% and 100%). The study is essential to identify appropriate parameters so as to achieve high-quality and defect-free graphene with a highly desirable aspect ratio after solvent dispersion for composite reinforcement. Quantitative approach via Raman spectroscopy is used to find the defect ratio and lateral size of graphene evolved under the effect of tip sonication parameters. Results imply that the defect ratio is steady and increases continually with GNPs, along with the transformation to the nano-crystalline stage I up to 60 min sonication at all amplitudes. Exfoliation was clearly observed at all amplitudes together with sheet re-stacking due to considerable size reduction of sheets with large quantity. Finally, considerable GNPs fragmentation occurred during sonication with increased amplitude and time as confirmed by the reduction of sp² domain (La) and flake size. This also validates the formation of edge-type defect

^a Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

^b Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

^c School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia

^d Sustainable Energy Technologies Center, College of Engineering, King Saud University, PO-Box 800, Riyadh 11421, Saudi Arabia

Download English Version:

https://daneshyari.com/en/article/7702470

Download Persian Version:

https://daneshyari.com/article/7702470

<u>Daneshyari.com</u>