Accepted Manuscript

Development of an electrochemical process for production of nano-copper oxides: Agglomeration kinetics modeling

Seyed Hadi Shahcheraghi, Mahin Schaffie, Mohammad Ranjbar

PII: S1350-4177(18)30224-4

DOI: https://doi.org/10.1016/j.ultsonch.2018.02.024

Reference: ULTSON 4085

To appear in: *Ultrasonics Sonochemistry*

Received Date: 28 November 2017 Revised Date: 8 January 2018 Accepted Date: 10 February 2018

Please cite this article as: S.H. Shahcheraghi, M. Schaffie, M. Ranjbar, Development of an electrochemical process for production of nano-copper oxides: Agglomeration kinetics modeling, *Ultrasonics Sonochemistry* (2018), doi: https://doi.org/10.1016/j.ultsonch.2018.02.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Development of an electrochemical process for production of nano-copper oxides:

Agglomeration kinetics modeling

Seyed Hadi Shahcheraghi¹*, Mahin Schaffie^{1, 2}, Mohammad Ranjbar¹

1. Mineral Industries Research Center (MIRC), Shahid Bahonar University of Kerman, Kerman, Iran

2. Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

*Corresponding author: Seyed Hadi Shahcheraghi; Tel: +98-913-2531004; Fax: +98-341-2114049

E-mail: sh.shahcheraghi@eng.uk.ac.ir

Abstract

process for production of high pure nano-copper oxides from mining and industrial resources (e.g., ore, spent, slag and wastewater). To conduct the proposed process, a special set up containing an electrochemical cell in an

The main objective of this study was the development of a simple, clean, and industrial applicable electrochemical

ultrasonic system (28 kHz and 160 W) was proposed. Accordingly, using this set up and applying appropriate

voltage (≈ 5 V) at 25°C, in the presence of N_2 gas, the simultaneous anode dissolution and nano-copper oxides

formation (\approx 24 nm) can be occurred, rapidly (less than 45 minutes). Then, the effect of N_2 gas and free radicals

generated by ultrasonic irradiation was studied. The results showed, in the absence of ultrasonic irradiation and N_2 ,

an increase of electrolyte pH from 6.42 to 10.92, a decrease of electrolyte Eh from 285 mV to -1.14 V, and

formation of copper nanoparticles. While, in the presence of ultrasonic and N2, the CuO nanoparticles were formed

due to presence of H_2O_2 generated by interaction of free radicals. Moreover, a novel method for kinetics modeling of

nanoparticles agglomeration was proposed according to distributed activation energy model and Arrhenius

parameters variation. The results showed that, in the absence of ultrasonic irradiation, the nanoparticle agglomerates

were firstly formed (interface controlled mechanism) and then, the diffusion of nanoparticle agglomerates was

occurred (diffusion controlled mechanism). Therefore, the control of nanoparticles size and shape may be

impossible without surfactant. Also, in the presence of ultrasonic irradiation, the whole of agglomeration process

followed interface controlled mechanism. Therefore, using ultrasonic irradiation, the nanoparticles shape and size

don't change due to prevention of agglomerates diffusion.

Keywords: Nano-copper oxide, Sonoelectrochemical process, Solid state kinetics, Ultrasonic irradiation,

Environmental-friendly method.

1

Download English Version:

https://daneshyari.com/en/article/7702707

Download Persian Version:

https://daneshyari.com/article/7702707

<u>Daneshyari.com</u>