Accepted Manuscript

Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles

Alireza Hadi, Jafar Zahirifar, Javad Karimi-Sabet, Abolfazl Dastbaz

PII:	\$1350-4177(18)30248-7
DOI:	https://doi.org/10.1016/j.ultsonch.2018.02.028
Reference:	ULTSON 4089
To appear in:	Ultrasonics Sonochemistry
Received Date:	27 November 2017
Revised Date:	7 January 2018
Accepted Date:	15 February 2018

Please cite this article as: A. Hadi, J. Zahirifar, J. Karimi-Sabet, A. Dastbaz, Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles, *Ultrasonics Sonochemistry* (2018), doi: https://doi.org/10.1016/j.ultsonch.2018.02.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles

Alireza Hadi¹, Jafar Zahirifar¹, Javad Karimi-Sabet^{2*†}, Abolfazl Dastbaz¹

¹Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

²Material and Nuclear Fuel Research School (MNFRS), Nuclear Science and Technology Research Institute, Tehran, Iran.

Abstract:

This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe_3O_4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe_3O_4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe_3O_4 particle separation from graphene solution which arises from the magnetic nature of Fe_3O_4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe_3O_4 nanoparticles concentration, sonication time,

[†] (*) Corresponding author. Email: j_karimi@alum.sharif.edu , jvkarimi@aeoi.org.ir

Download English Version:

https://daneshyari.com/en/article/7702742

Download Persian Version:

https://daneshyari.com/article/7702742

Daneshyari.com