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a b s t r a c t

This paper presents the exact closed-form solutions for the stress fields induced by a two-
dimensional (2D) non-uniform displacement discontinuity (DD) of finite length in an iso-
tropic elastic half plane. The relative displacement across the DD varies quadratically.
We employ the complex potential-function method to first determine the Green’s stress
fields induced by a concentrated force and then apply Betti’s reciprocal theorem to obtain
the Green’s displacement fields due to concentrated DD. By taking the derivative of the
Green’s functions and integrating along the DD, we derive the exact closed-form solutions
of the stress fields for a quadratic DD. The solutions are applied to analyze the stress fields
near a horizontal DD in the half plane with three different profiles: uniform (constant), lin-
ear, and quadratic. The same methodology is applied to an inclined normal fault to inves-
tigate the effect of different DD profiles on the maximum shear stress in the half plane as
well as on the normal and shear stresses along the fault. Numerical results demonstrate
considerable influence of the DD profile on the stress distribution around the discontinuity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Scientists and engineers study cracks for many reasons. Two key reasons are to (1) understand the associated stress con-
centrations or singularity features, and (2) accurately predict the life span of cracked structures or media.

Numerical methods such as the finite element method (FEM) and boundary element method (BEM) have been utilized by
many researchers to solve crack problems. The BEM based on displacement discontinuity (DD) has been proved to be par-
ticularly efficient [1–3]. The indirect BEM also has been used to treat single and multiple displacement discontinuities (DDs)
in 2D finite and infinite regions [4] and to calculate stress intensity factors at crack tips in 2D anisotropic elastic solids [5]. An
accurate single-domain BEM for 2D infinite, finite, and semi-infinite anisotropic solids [6] has been extended to three-
dimensional (3D) anisotropic media [7]. The Riemann–Hilbert method can be adopted to solve 2D crack problems in an infi-
nite, homogeneous, anisotropic plate [8]. A general higher-order DD method coupled with an indirect BEM has been applied
to the quasi-static analyses of radial cracks produced by blasting [9]. Complex crack problems such as multiple branched and
intersecting cracks also have been investigated using the numerical manifold method [10], which also has been applied to 2D

http://dx.doi.org/10.1016/j.engfracmech.2014.10.009
0013-7944/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 330 972 6739; fax: +1 330 972 6020.
E-mail address: pan2@uakron.edu (E. Pan).

Engineering Fracture Mechanics 132 (2014) 177–188

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier .com/locate /engfracmech

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2014.10.009&domain=pdf
http://dx.doi.org/10.1016/j.engfracmech.2014.10.009
mailto:pan2@uakron.edu
http://dx.doi.org/10.1016/j.engfracmech.2014.10.009
http://www.sciencedirect.com/science/journal/00137944
http://www.elsevier.com/locate/engfracmech


crack propagation [11]. Moreover, the growth of short fatigue cracks has been studied by 2D DD BEM [12]. Axisymmetric
crack problems have been analyzed with the axisymmetric DD method [13].

DD-based BEM analyses have been applied to a variety of problems in geology, especially those involving faults. These
models have been used to simulate the behavior and interaction of intersecting faults in both 2D and 3D [14,15], and the

Nomenclature

Latin
aj, bj, cj constants to determine the relative displacement discontinuity profile in j-direction
A, B complex constants
f1(), f2(), f3() function of
Fx, Fy line force component along x- and y-direction respectively
i imaginary unit
k1, k2, . . ., k15 complex variables
L length of displacement discontinuity
n normal vector
np p-component of normal vector
p, q, r, s, w dummy complex variables
t parameter that varies between 0 and 1 along the displacement discontinuity
tm location along displacement discontinuity between 0 and 1 at which relative displacement is known;

0 < tm < 1
uk displacement component in k-direction
uk, j derivative of k-component of displacement with respect to coordinate j
Du relative displacement discontinuity vector
Duj1, Duj2 relative displacement discontinuities along j-direction at starting and ending points of displacement

discontinuity
Dujm relative displacement discontinuities along j-direction at t = tm

Duq relative displacement discontinuities along q-direction
x, y coordinates of the field point of the line force
x1, x2; y1, y2 coordinates of starting and ending points of displacement discontinuity
xs, ys coordinates of the source point of the line force
z, zs complex variable to define a field point and source point of the line force
z1, z2 complex variables to define starting and ending points of displacement discontinuity

Greek
aj, bj, cj constants related to the profile of displacement discontinuity
C1, C2 complex functions
C1p, C2p complex functions corresponding to particular solution
C1c, C2c complex functions corresponding to complementary solution
exx, eyy, cxy strain components
l shear modulus
m Poisson’s ratio
rk

pq pq component of stress induced by a line force in k-direction
rk

pq;j derivative of pq-component of stress induced by a line force in k-direction with respect to coordinate j
rxx, ryy, rxy stress components
/(), w() complex functions
/p(), wp() complex functions which describe the particular solution in an infinite plane
/c(), wc() complex functions which describe the complementary solution of the half plane
X1, X2 complex functions
X1p, X2p complex functions corresponding to particular solution
X1c, X2c complex functions corresponding to complementary solution

Acronyms
2D two-dimensional
3D three-dimensional
BEM boundary element method
DD displacement discontinuity
FEM finite element method
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