Accepted Manuscript

A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu₂O nanocomposite modified glassy carbon electrode

S. Selvarajan, A. Suganthi, M. Rajarajan

PII: S1350-4177(18)30299-2

DOI: https://doi.org/10.1016/j.ultsonch.2018.02.038

Reference: ULTSON 4099

To appear in: *Ultrasonics Sonochemistry*

Received Date: 21 November 2017 Revised Date: 23 February 2018 Accepted Date: 24 February 2018

Please cite this article as: S. Selvarajan, A. Suganthi, M. Rajarajan, A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu₂O nanocomposite modified glassy carbon electrode, *Ultrasonics Sonochemistry* (2018), doi: https://doi.org/10.1016/j.ultsonch.2018.02.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu₂O nanocomposite modified glassy carbon electrode

S. Selvarajan^a, A. Suganthi^{ab}*, M. Rajarajan^{c*}

^aPG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamilnadu, India.
^bMother Teresa Women's University, Kodaikanal-624 102, Tamilnadu, India
^c Directorate of Distance Education, Madurai Kamaraj University, Madurai-625 021,
Tamilnadu, India

Corresponding authors: suganthiphd09@gmail.com, rajarajanchem1962@gmail.com

Abstract

A silver/polypyrrole/copper oxide (Ag/PPy/Cu₂O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu₂O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu₂O/GCE) and silver/polypyrrole/copper (Ag/PPy/Cu₂O/GCE).oxide/glassy carbon electrode The Ag/PPy/Cu₂O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L⁻¹ and the detection limit was found to be $0.0124 \text{ }\mu\text{mol} \text{ }L^{-1}$. It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and lowcost serotonin sensor for practical routine analyses. The proposed method is potential to expand

Download English Version:

https://daneshyari.com/en/article/7702835

Download Persian Version:

https://daneshyari.com/article/7702835

<u>Daneshyari.com</u>