Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engfracmech

Fracture analysis in piezoelectric semiconductors under a thermal load

J. Sladek^{a,*}, V. Sladek^a, E. Pan^b, M. Wünsche^a

^a Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia ^b Computer Modeling and Simulation Group, Department of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA

ARTICLE INFO

Article history: Received 25 March 2014 Received in revised form 21 May 2014 Accepted 27 May 2014 Available online 7 June 2014

Keywords: Meshless local Petrov–Galerkin method (MLPG) Moving least-squares approximation Piezoelectric solids Semiconductor Intensity factors Uncoupled thermoelasticity Impermeable conditions

ABSTRACT

In this paper, we solve the in-plane crack problem in piezoelectric semiconductors under a transient thermal load. General boundary conditions and sample geometry are allowed in the proposed formulation. The coupled governing partial differential equations (PDE) for stresses, electric displacement field and current are satisfied in a local weak-form on small fictitious subdomains. All field quantities are approximated by the moving least-squares (MLS) scheme. After performing the spatial integrations, we obtain a system of ordinary differential equations for the nodal unknowns. The influence of initial electron density on the intensity factors and energy release rate is investigated.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials (PZ) have a wide range of engineering applications in smart structures and devices. Certain piezoelectric materials are also temperature sensitive, i.e. an electric charge or voltage is generated when temperature variations are exposed. This effect is called the pyroelectric effect. If a temperature load is considered in a piezoelectric solid it is needed to take into account the coupling of thermo-electro-mechanical fields. The theory of thermo-piezoelectricity was for the first time proposed by Mindlin [22]. The physical laws for thermo-piezoelectric materials were explored by Nowacki [23]. Dynamic thermoelasticity is relevant for many engineering problems since thermal stresses play an important role in the integrity of structures. The uncoupled thermoelasticity is considered here, since there is no heat production due to the strain rate, i.e. the thermoelastic dissipation. Thus, the temperature field is not influenced by mechanical deformation and the heat conduction equation can be solved first to obtain the temperature distribution. However, the coupling of mechanical and electric fields is still valid. Recently, Sladek et al. [39] analyzed non-conducting piezoelectric materials under a thermal load.

However, piezoelectric materials can be either dielectrics or semiconductors. Up to date dielectric materials are more intensively investigated than semiconductors. The analyzed problem for non-conducting PZ is simpler than for semiconductors. In piezoelectric semiconductors the induced electric field produces also the electric current. The interaction between mechanical fields and mobile charges in piezoelectric semiconductors is called the acoustoelectric effect [18,50]. An acoustic wave traveling in a PZ semiconductor can be amplified by application of an initial or biasing direct current electric field [44].

http://dx.doi.org/10.1016/j.engfracmech.2014.05.011 0013-7944/© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. E-mail address: sladek@savba.sk (J. Sladek).

Nomenclature

Latin symbols	
a	crack-length
С	specific heat
C _{iikl}	elasticity tensor
d_{ii}	carrier diffusion tensor
eiik	piezoelectric tensor
h _{ii}	dielectric tensor
k_{ii}	thermal conductivity
n_i	outward unit normal vector
p_i	pyroelectric material coefficients
p ^T	vector of complete basis functions
q	electric charge of electron
t _i	traction vector
u _i	elastic displacements
u*	test function
W^*	test function
w^a	weight function
Di	electric displacements
E,	electric field
G	energy release rate
- li	electric current
K_{I}, K_{II}	stress intensity factors
K _D	electric displacement intensity factor
K.,	strain intensity factor
K	electric vector intensity factor
M	electron density
N ^a	shape function associated with the node <i>a</i>
Creak symbols	
B.	linear thermal expansion
Pij δ	Kronecker delta
01j	strain tensor
cij d	electric potential
φ 2	stress_temperature modulus
λ _{ij}	electron mobility tensor
μ_{ij}	test function
0	mass density
ρ σ	stress tensor
τ	time
Г	houndary with prescribed displacements
	boundary with prescribed tractions
Γ_{t}	boundary with prescribed electric potential
	boundary with prescribed pormal component of the electric displacements
	boundary with prescribed electron density
	boundary with prescribed electron density
гь Г	boundary with prescribed temperature
	boundary with prescribed best flux
f_{f}	local subdomain
<u>s₂s</u> aΩ	local subdomain
0325	
Other symbols	

f, i f partial derivative of the function f

time derivative of the function f

This phenomenon is utilized in many acoustoelectric devices [15,4]. In literature one can find also more sophisticated models of deformable piezoelectric semiconductors [52,53]. Lorenzi and Tiersten [52] derived governing equations for finitely deformable, polarized and magnetizable heat conducting and electrically semiconducting continuum. The model consists

Download English Version:

https://daneshyari.com/en/article/770285

Download Persian Version:

https://daneshyari.com/article/770285

Daneshyari.com