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a b s t r a c t

Quasi-brittle materials are modeled taking into account the anisotropic damage and its
unilateral character. Among the models, proposed in the literature, a first selection has
been made. The attention is thus restricted to models where the damage is managed by
a discrete sum of its effects along fixed directions. The influence of the basic assumptions
of the selected models are compared. Thus, models are at first expressed both into the
Kunin and Walpole tensor decompositions to highlight the damage effects on each stiffness
tensor component. A numerical study illustrates the effect of a damage effect on
engineering parameters sensitivity and compares the versatility of those models. This work
shows that the microplane framework is the most versatile, against Poisson’s ratio damage,
while using the Volumetric Deviatoric Tangential (VDT) decomposition.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The influence of microcracking on the nonlinear behavior of quasi-brittle materials is widely recognized. This leads to a
damage induced anisotropy, involving a sensitivity of the response to the cracks closure, which results in an increase of
the transversal to longitudinal strain ratio during compression tests, and a strong dependence on the confining pressure.
Continuum Damage Mechanics was originally introduced by Kachanov [16] and Rabotnov [24]. Isotropic damage were
first considered by Lemaitre and Chaboche [10], Mazars [20], then anisotropic ones were proposed [18,13,21,15]. Despite
continuous improvements, inconsistencies remained, as mentioned by Chaboche [9] or Carol and Willam [8].

A consistent thermodynamic formulation requires the conservativeness and existence of the free energy, i.e. the
symmetry of the Hessian tensor. Moreover, the stress–strain response must be continuous and must not create any spurious
dissipation. However, if discontinuity is introduced into the damage tensor using the strain eigenvalues, Challamel et al. [11]
showed that conservation of free energy is obtained only if the principal directions of damage tensor coincide with those of
strain tensor. Likewise, a thermodynamic potential based on the positive and the negative parts of the strain tensor often
results in undesirable artificial dissipation [8]. Finally, Cormery [12] shows, for a given state, an example of loss of objectivity
for such formulations and thus their inability to generate a potential.

Recent studies [4,22,27,1] have proposed solution for these kind of thermodynamic inconsistencies using a formulation
based on a set of predetermined directions on which crack densities are defined, in a spherical distribution. These models can
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be classified into two categories: (1) phenomenological macroscopic constitutive laws, (2) macroscopic laws obtained from
an homogenization process and assumptions at the mesoscale. This article proposes a method to compare formulation which
describe the behavior of quasi-brittle materials, initially isotropic, satisfying thermodynamic requirements. Analysis of the
damage effect highlights the differences between these models.

2. Selected models

In the selected models, microcracks fall into N sets, characterized by their density and normal orientation ni which is
described and fixed. The condition for opening/closure of crack can thus be postulated in these directions avoiding a spectral
decomposition of the strain tensor. Considering the assumption of non-interacting microcracks, both behavior and closure
effects are treated in each direction. The effect of several microcracks on the stiffness of an initially isotropic material is
the sum of the contributions of each set of microcracks. A set of randomly distributed microcracks characterized by a com-
mon normal orientation induces a transverse isotropic behavior. The following models meet the requirements of the ther-
modynamics of irreversible processes framework. The Young’s, shear and bulk moduli and the Poisson’s ratio of the material
are respectively E; l; k, and m. For each direction, the second-order tensor Ni is defined as the tensor product ni � ni and the
scalar angular weighting coefficient as wi. � denotes the tensor product, and � the symmetrized tensor product.

2.1. Discrete approach

Discrete Model (DM) is based on a previous model proposed by Halm and Dragon [15]. The damage tensor has been
replaced by sets of microcracks with densities qDis

i associated with prescribed directions [1]. The resulting damaged stiffness
tensor Cd is given in the Kunin [17] formalism by:

Cdðqi;NiÞ ¼ k� 2
3
l

� �
1� 1þ 2l 1 � 1�

XN

i¼1

qDis
i a 2 1 � 1� 1� 1þ 1� Ni þ Ni � 1½ � þ 2b 1 � Ni þ Ni � 1½ �
�

� 3aþ 4bÞHð�trðe � NiÞÞNi � Nið g ð1Þ

Nomenclature

Abbreviations
DM Discrete Model
EM Eshelby Model
RVE Representative Volume Element
VD Volumetric Deviatoric
VDT Volumetric Deviatoric Tangential

Tensor notations
n scalar
n vector
N second-order tensor
N fourth-order tensor
1 second-order unit tensor
I fourth-order unit tensor
r Cauchy stress tensor
~r effective stress tensor
g strain tensor
Cel elastic stiffness tensor
Ced elastic stiffness damaged tensor
IV volumetric part of fourth-order identity tensor I

ID deviatoric part of fourth-order identity tensor I

Tensor operations
� dot product
: double dot product
� tensor product ða � bijklÞ ¼ aijbkl ða � bijklÞ ¼ ailbjk ða � bijklÞ ¼ aikbjl ða � bijklÞ ¼ 1

2 ðaikbjl þ ailbjkÞ
H (X) Heaviside function HðxÞ ¼ xþjxj

2jxj
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