Accepted Manuscript

Simple and fast preparation of graphene oxide@ melamine terephthaldehyde and its PVC nanocomposite via ultrasonic irradiation:Chemical, mechanical and thermal resistance Study

Mahroo Khaleghi, Khadijeh Didehban, Meisam Shabanian

PII: S1350-4177(17)30633-8

DOI: https://doi.org/10.1016/j.ultsonch.2017.12.049

Reference: ULTSON 4033

To appear in: *Ultrasonics Sonochemistry*

Received Date: 30 November 2017 Revised Date: 27 December 2017 Accepted Date: 28 December 2017

Please cite this article as: M. Khaleghi, K. Didehban, M. Shabanian, Simple and fast preparation of graphene oxide@ melamine terephthaldehyde and its PVC nanocomposite via ultrasonic irradiation:Chemical, mechanical and thermal resistance Study, *Ultrasonics Sonochemistry* (2017), doi: https://doi.org/10.1016/j.ultsonch.2017.12.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Simple and fast preparation of graphene oxide@ melamine terephthaldehyde and its PVC nanocomposite via ultrasonic irradiation: Chemical, mechanical and thermal resistance Study

Mahroo Khaleghi^a, Khadijeh Didehban^a and Meisam Shabanian*^b

^a Department of Chemistry, Payam Noor University (PNU), P.O. Box:19395-3697, Tehran, Iran

^b Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran

*Corresponding author: Tel: +989173235388; Fax: +982632818844; Email: m.shabanian@standard.ac.ir

Abstract

Melamine terephthaldehyde modified graphene oxide (MTR-GO) with optimum content was easily prepared via ultrasonication method and used as anti-corrosion additive for Poly (vinyl chloride) (PVC). The effects of ultrasonicated MTR-GO on the mechanical, chemical and thermal resistance of the PVC were thoroughly studied. Change percentage of tensile strength and weight change percentage of PVC (P) and PVC/MTR-GO nanocomposite (PN) in acetone and sodium hypochlorite (NaClO) media at two different exposure temperature (20°C and 50°C) were examined. The PN sample showed lower change loss percentage of tensile strength in acetone uptake as compared with P sample at 20°C. In higher temperature (50°C), P sample was decomposed while PN still showed tensile data. The change loss percentage in tensile strength of PN sample showed 13% change at 50°C in sodium hypochlorite while P sample showed 63% change for the parameter. Protective behavior of MTR-GO nanofiller on PVC matrix against thermal HCl releasing was investigated by Congo red tests. The results showed that the nanocomposite release less

Keywords: Corrosion effect; Polyvinyl chloride; Nanocomposite; HCl releasing

amount of HCl as compare to the neat PVC.

Download English Version:

https://daneshyari.com/en/article/7703141

Download Persian Version:

https://daneshyari.com/article/7703141

Daneshyari.com